Пример #1
0
def correlation_experiment(file, lan, embf, name):
    data, cencoder, tencoder, embchars = readdata(file, lan)
    cdecoder = {v: k for k, v in cencoder.items()}
    tdecoder = {v: k for k, v in tencoder.items()}
    features = getphonfeatures()
    lanfeatures = [
        np.array(features[cdecoder[f]]) if cdecoder[f] in features else None
        for f in range(len(cencoder))
    ]

    featsim = getsimmatrix(lanfeatures, len(cencoder), embchars)

    embeddings = embf(data, cencoder, embchars, tencoder, cdecoder, tdecoder,
                      lan)

    sims = [getsimmatrix(m, len(cencoder), embchars) for m in embeddings]
    rs = [correlation(featsim, sims[i])[0] for i in [0, 1, 2]]
    print("%s %s:" % (lan, name))
    print(" PEARSON R FOR EMBEDDING AND FEATURE REPR. SIMILARITIES:")
    print("  %s,DIM=5" % lan, rs[0])
    print("  %s,DIM=15" % lan, rs[1])
    print("  %s,DIM=30" % lan, rs[2])

    randrs = [[], [], []]
    for i in range(N):
        ranembeddings = [matshuf(m) for m in embeddings]
        ransims = [
            getsimmatrix(m, len(cencoder), embchars) for m in ranembeddings
        ]
        randrs[0].append(correlation(featsim, ransims[0])[0])
        randrs[1].append(correlation(featsim, ransims[1])[0])
        randrs[2].append(correlation(featsim, ransims[2])[0])

    print((" P=%.2f CONF. INTERVALS FOR PEARSON R OF RANDOM ASSIGNMENT OF\n" %
           P) + " EMBEDDINGS TO PHONEMES AND PHONETIC FEATURE DESCRIPTIONS:")
    civals = [confidenceival(randrs[i]) for i in [0, 1, 2]]
    print("  %s,DIM=5" % lan, confidenceival(randrs[0]),
          checkr(civals[0], rs[0]), rs[0])
    print("  %s,DIM=15" % lan, confidenceival(randrs[1]),
          checkr(civals[1], rs[1]), rs[1])
    print("  %s,DIM=30" % lan, confidenceival(randrs[2]),
          checkr(civals[2], rs[2]), rs[2])
    print()
#    print()
#    print(mod.status,"\t",mod.objVal,"\t",ct)

    return mod


# %%
# Number of instances
Is = 10

# Number of models, where model 0 is the non altered basic order model
M = 1

# Combinations
Combs = order_pot(poten(list(range(1, M))))

parN,parP,parC,parD=readdata()

Ic = 0
h=0

# For instance ii in set of instances Is
for ii in range(Is):
    # For model set mn in set of models:
    for mn in Combs:
        Ic = Ic + 1
        h = h + 1
        MathModel(parC[ii], parD[ii], parN[ii], parP[ii], mn, ii, Ic)
        print(h,"\t",ii,"\t",mn)
        print("")
Пример #3
0
#closeddf = data.collect("Close")
#highdf = data.collect("High")
#lowdf = data.collect("Low")

#pre-saved data in pickle, open it for quicker run.
pickle_in = open("Close.pickle", "rb")
closeddf = pickle.load(pickle_in)
pickle_in = open("Low.pickle", "rb")
lowdf = pickle.load(pickle_in)
pickle_in = open("High.pickle", "rb")
highdf = pickle.load(pickle_in)
#different indicators is calculated by calling back to data.py and save it as the particular
#pandas database
#normalizing the closeddf by using the first day closing price
normalizedCloseddf = data.normalizeData(closeddf)
volumeDF = data.readdata("Volume")
SMAdf = data.SMA(closeddf, 20)
EMAdf = data.EMA(closeddf, 5)
RSIdf = data.RSI(closeddf, 14)
KSTdf = data.KST(closeddf, 10, 15, 20, 30, 10, 10, 10, 15)
TRIXdf = data.TRIX(closeddf, 15)
IXIC = pd.DataFrame(index=normalizedCloseddf.index)
IXIC = normalizedCloseddf[['IXIC Close']]
highbbdf, lowbbdf = data.BollingerBand(closeddf)
MassIdf = data.MassI(highdf, lowdf)
MOMdf = data.MOM(closeddf, 10)
ROCdf = data.ROC(closeddf, 10)
dailyReturnDF = data.dailyReturn(normalizedCloseddf)
MACDdf, MACDsigndf, MACDDiffdf = data.MACD(closeddf)
STOKdf = data.STOK(closeddf, lowdf, highdf)
STOdf = data.STO(closeddf, lowdf, highdf, 14)
Пример #4
0
          checkr(civals[0], rs[0]), rs[0])
    print("  %s,DIM=15" % lan, confidenceival(randrs[1]),
          checkr(civals[1], rs[1]), rs[1])
    print("  %s,DIM=30" % lan, confidenceival(randrs[2]),
          checkr(civals[2], rs[2]), rs[2])
    print()


if __name__ == "__main__":
    print("1. CORRELATION EXPERIMENTS")
    print("--------------------------")
    print()
    #    correlation_experiment("../data/finnish","FI",getsvdembs,"SVD")
    #    correlation_experiment("../data/turkish","TUR",getsvdembs,"SVD")
    #    correlation_experiment("../data/spanish","ES",getsvdembs,"SVD")

    #    correlation_experiment("../data/finnish","FI",getw2vembs,"W2V")
    #    correlation_experiment("../data/turkish","TUR",getw2vembs,"W2V")
    #    correlation_experiment("../data/spanish","ES",getw2vembs,"W2V")

    #    correlation_experiment("../data/finnish","FI",getrnnembs,"RNN")
    #    correlation_experiment("../data/turkish","TUR",getrnnembs,"RNN")
    #    correlation_experiment("../data/spanish","ES",getrnnembs,"RNN")

    data, cencoder, tencoder, embchars = readdata('../data/finnish', "FI")
    modeld = initmodel(cencoder, tencoder, 15)
    encoded = encode(data[0][1], data[0][2], modeld)
    train(data, modeld)
#    for i in range(100):
#        print(update(data[0][1],data[0][2],data[0][0],modeld))