Пример #1
0
import os, time
from data.readfile import *

cwd = os.getcwd()
grid = readfile(f'{cwd}\\data')
print(*grid)
from processing_py import *  # pip install processing-py
from data.block_class import *
from data.update import *


def delay(seconds: float):
    time.sleep(seconds)


delta = 0
rez = 150


def showDir(pos, i, j):
    PI = 3.14
    a = pos.dir
    app.pushMatrix()
    app.translate(i, j)
    if a[1] == 1:
        app.rotate(PI)
    app.rotate(PI / 2 * a[0])
    app.translate(0, -65)
    app.ellipse(0, 0, 20, 20)
    app.popMatrix()
Пример #2
0
        prices = prices[inbudget]
        cases = cases[inbudget]
        indexmaxutil = np.argmax(utils)
        return cases[indexmaxutil], prices[indexmaxutil]

    bestcase, price = best_case(cases, utils, prices, budget)
    print('Ayt Miss. Here is your ${} meal:'.format(price))
    for x in range(len(bestcase)):
        if bestcase[x] > 0:
            print('    - {}: {} units'.format(products[x].name, bestcase[x]))
    nutrients = np.matmul(bestcase, v)[0:3]
    msg = 'It gives you'
    for i in range(len(nutrients)):
        msg = '%s %.0f%% %s' % (msg, nutrients[i], labels[i])
    msg = msg + ' of your daily intake'
    print(msg)


if __name__ == '__main__':
    # read product data
    products, labels = data.readfile('datasets/starmarket.csv')
    budget = input('What is your max daily budget in dollars?\n>>')
    budget = float(budget)

    calories = input('What is your desired daily calorie intake?\n>>')
    calories = float(calories)

    desiredpercent = (calories / 2000) * 100
    # BRUTE FORCE POWER
    brute_force(products, labels, budget, desiredpercent)
Пример #3
0
# N_NEGS = 10
N_EPOCHS = 1
REPORT_EVERY = 1
LEARNING_RATE = 0.01
N_GRAM = 5  # The length of the center word

toy_corpus = [
    'You may work either independently or in a group',
    'We have five suggestions for topics and practical projects',
    'We will provide datasets for each practical project',
    'You can also choose your own topic and suggest a project or choose and existing topic and suggest your own project based on the topic'
]

# CORP = toy_corpus

CORP = readfile('MeBo-123.2015_stamd.txt')


#-- model --#
class SGNS(nn.Module):  #Skipgram (without negative sampling for now)
    def __init__(self, embedding_dim, vocab_size):
        super(SGNS, self).__init__()
        self.embedding_dim = embedding_dim
        self.vocab_size = vocab_size

        self.embed = nn.Embedding(vocab_size, embedding_dim)
        self.linear = nn.Linear(vocab_size * embedding_dim,
                                vocab_size)  # Is this input size correct?

    def forward(self, x):
        out = self.embed(x)
Пример #4
0
        cntr(np.array): centers of the fuzzy clustering, dimension [cluster_num feature_num]
        X (np.array): data of the patients, dimension [data_num feature_num]
        label (pd.DataFrame): ground truths of the data, multilabels, dimension [data_num label_num]
        labelname (string): string of the label name being evaluated

    Return:
        score of the fuzzy clustering
    """
    if score_type == 'FU':
        return normFuzzPartScore(u)

    elif score_type == 'partition index':
        return _partitionIndex(X, cntr, u)

    elif score_type == 'separation index':
        return _separationIndex(X, cntr, u)

    else:
        print("No such score type")


if __name__ == '__main__':
    from data import readfile
    data, label = readfile()
    print('data shape', data.shape)
    print('label shape', label.shape)
    print(data.iloc[:10, :2])

    X = data.drop(['Name'], axis=1).values
    print(X.shape)
Пример #5
0
import data
import solve
import newton
import numpy as np

parser = argparse.ArgumentParser(description='It is a program for ML HW#1.')
parser.add_argument('file_path', help='file path of input', type=str)
parser.add_argument('base', help='the number of polynomial bases', type=int)
parser.add_argument('rate', help='rate of regulation', type=float)
args = parser.parse_args()

print('file_path: {}'.format(args.file_path))
print('base: {}'.format(args.base))
print('rate: {}'.format(args.rate))

(x, y) = data.readfile(args.file_path)
assert len(x) == len(y)
print('-'*30)
print('x: {}'.format(x))
# print(y)


weight_LSE, error_LSE = solve.LSE(x, y, args.base, args.rate)
print('-'*30)
print('weight of LSE: \n{}'.format(weight_LSE))
print('error of LSE: \n{}'.format(error_LSE))

weight_NT, error_NT = newton.optimize(x, y, args.base)
print('-'*30)
print('weight of NT: \n{}'.format(weight_NT))
print('error of NT: \n{}'.format(error_NT))