Пример #1
0
def build_gan():
    noise_dim = 64
    gen = dcgan_gen(noise_dim=noise_dim)
    disc = dcgan_disc()
    gan = GAN(gen, disc)
    batch_gen = MNISTBatchGenerator()
    noise_gen = NoiseGenerator([(noise_dim,)])

    return (gan, batch_gen, noise_gen)
Пример #2
0
    theta = torch.zeros(args.p).to(device)

    data, theta = generate_contaminated_data(args.eps,
                                             args.train_size,
                                             theta=theta,
                                             type_cont=args.contamination,
                                             coord_median_as_origin=False)
    data = data.to(device)
    theta = theta.to(device)

    data_loader = torch.utils.data.DataLoader(TensorDataset(data),
                                              batch_size=args.real_batch_size,
                                              shuffle=True,
                                              num_workers=0)

    noise_generator = NoiseGenerator().to(device)
    '''
    We recommend not using coordinate-wise median as initialization.
    The global minimum of Wasserstein GAN has mean square error very close to the coordinate-wise median,
    thus we prefer the training starting from somewhere else in order to see the progress of training.
    '''
    generator = Generator(
        p=args.p,
        initializer=1.3 * coord_median(data_loader.dataset.tensors[0]),
        # 0.5 * torch.ones(args.p),
    ).to(device)

    sinkhorn = SinkhornIteration(lam=args.lam,
                                 max_iter=args.sinkhorn_max_iter,
                                 device=device,
                                 const=args.const,