Пример #1
0
def dashboard():
	data = None
	d = Read_Data()
	d = d.read()
	if(('user' in session and session['user'] == params['admin_user'])):
		return render_template('dashboard.html',data = d)

	elif('user' in session and session['user'] == params['username']):
		if(request.method == 'POST'):
			name = request.form.get('Name')
			email = request.form.get('Email')
			msg = request.form.get('Msg')

			data = {'Name':name,'Email':email,'Messages':msg}
			check_file = False
			try:
				df = pd.read_csv("Messages.csv",index_col=0)
				check_file = True
			except:
				df = pd.DataFrame(data,index = [0])
				df.to_csv("Messages.csv")

			if(check_file):
				df = df.append(data,ignore_index = True)
				df.to_csv("Messages.csv")
		usr = params['username']
		return render_template('user_dashboard.html',data = d,usr = usr)


	msg = None
	if(request.method == 'POST'):

		usrname = request.form.get('usrname')
		password = request.form.get('pass')

		if(usrname == params['admin_user'] and password == params['admin_pass']):
			session['user'] = usrname
			return render_template('dashboard.html',data = d)
		if(usrname == params['username'] and password == params['password']):
			session['user'] = usrname
			usr = usrname
			return render_template('user_dashboard.html',data = d,usr = usr)

		else:
			msg = 0
			return render_template('Login.html',msg = msg)

	return render_template('Login.html',msg = msg)
Пример #2
0
def grid_search(nb_epoch=200):
    global NUM_CLASSES, input_shape
    file_path = "./gridSearch/fft_params/"
    nfft_try = [int(4096), int(2048), int(1024)]
    overlap_try = [0.9, 0.5, 0.75]
    brange_try = [8, 16]

    K.clear_session()
    # Grid Search
    for nfft_val in nfft_try:
        for overlap_val in overlap_try:
            for brange_val in brange_try:
                # Define file name to store results
                fname = file_path + "Exp_" + str(nfft_val) + "_" + str(overlap_val) + "_" + str(brange_val)
                # Read and format data - all gestures
                gd = Read_Data.GestureData(gest_set=1)
                print("Reading data")
                x, y, user, input_shape, lab_enc = gd.compile_data(nfft=nfft_val, overlap=overlap_val,
                                                                   brange=brange_val, keras_format=True,
                                                                   plot_spectogram=False,
                                                                   baseline_format=False)
                NUM_CLASSES = len(lab_enc.classes_)
                print("NFFT_Val: ", nfft_val, "Overlap_Val: ", overlap_val, "Brange_Val:", brange_val)
                print("Train the model")
                train_val_hist = loso_gridSearch_cv(x, y, user,
                                                    lab_enc,
                                                    batch_size=64,
                                                    nb_epoch=nb_epoch,
                                                    file_path=fname)
                plot_train_hist(train_val_hist, file_path=fname)
                K.clear_session()
Пример #3
0
def airware_baseline_data():
    gd = Read_Data.GestureData(gest_set=1)
    x, y, user, lab_enc = gd.compile_data(nfft=4096,
                                          overlap=0.5,
                                          brange=16,
                                          keras_format=False,
                                          plot_spectogram=False,
                                          baseline_format=True)
    return x, y, user, lab_enc
Пример #4
0
def airware_data(gest_set=1):
    param_list = HyperParams()
    gd = Read_Data.GestureData(gest_set=gest_set)
    x, y, user, input_shape, lab_enc = gd.compile_data(
        nfft=param_list.NFFT_VAL,
        overlap=param_list.OVERLAP,
        brange=param_list.BRANGE,
        max_seconds=2.5,
        keras_format=True,
        plot_spectogram=False,
        baseline_format=False)
    num_classes = len(lab_enc.classes_)
    param_list.input_shape = input_shape
    param_list.num_classes = num_classes
    return x, y, user, lab_enc, param_list
Пример #5
0
def airware_data():
    param_list = HyperParams()
    gd = Read_Data.GestureData(gest_set=1)
    x, y, user, input_shape, lab_enc = gd.compile_data(
        nfft=param_list.NFFT_VAL,
        overlap=param_list.OVERLAP,
        brange=param_list.BRANGE,
        max_seconds=2.5,
        keras_format=True,
        plot_spectogram=False,
        baseline_format=False)

    x_train, x_test, y_train, y_test = train_test_split(x,
                                                        y,
                                                        test_size=0.3,
                                                        stratify=None,
                                                        random_state=234)
    num_classes = len(lab_enc.classes_)
    param_list.input_shape = input_shape
    param_list.num_classes = num_classes

    return x_train, x_test, y_train, y_test, param_list
Пример #6
0
            torch.cuda.manual_seed_all(seed)

        torch.backends.cudnn.enabled = False
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True

        seed_index = seed_index + 1
        print('Reading Data. with seeds: ' + str(seed))
        data = Read_Data(column_names=args,
                         data_name=args.data_name,
                         data_file=args.data_file,
                         train_ratio=args.training_ratio,
                         test_val_ratio=args.test_val_ratio,
                         med_flag=args.medical_data,
                         weight_flag=args.weight_class,
                         seed=seed,
                         upos=args.upos,
                         umed=args.umed,
                         uad=args.uad,
                         qk=args.question_knowledge,
                         cluster_size=args.cluster_number,
                         wordnet=args.wordnet,
                         class_number=args.class_number)

        print('Building Embedding Matrix')

        embedding = Create_Embedding(
            file_path=args.embd_file,
            embd_file_mimic=args.embd_file_mimic,
            word2index=data.word2index,
            custom=args.embedding_flag,