def __getitem__(self, index): filename_hr = os.path.join(self.data_root, self.datasets_hr.iloc[index, 0]) # # PIL read image_hr = Image.open(filename_hr).convert('RGB') image_hr = self.transform(image_hr) image_hr = image_hr.permute(1, 2, 0) image_hr = image_hr * 255 # cv2 read # image_hr = cv2.imread(filename_hr) # image_hr = torch.from_numpy(image_hr) # 0-255 cv2(256,256,3) (RGB) # image_hr, image_lr, filename_lr = lr_data(self.imgfilter_l, self.imgfilter_h, self.with_possion, self.with_texturesyn_thesis,image_hr, filename_hr, self.noises_mean, self.noise_yuv, 1) image_hr, image_lr, filename_lr = lr_data( self.imgfilter_l, self.imgfilter_h, self.with_possion, self.with_texturesyn_thesis, image_hr, filename_hr, self.noises_mean, self.noise_yuv, 1) image_hr = torch.clamp(image_hr / 255, 0, 1) image_lr = torch.clamp(image_lr / 255, 0, 1) data = {'lr': image_lr, 'hr': image_hr, 'filename': filename_lr} # RGB tensor (0,1) # # test # hhr = image_hr.numpy() # hhr = cv2.cvtColor(hhr, cv2.COLOR_RGB2BGR) # cv2.imwrite(self.main_path + "hr" + ".jpg", hhr*255 ) # llr = image_lr.numpy() # llr = cv2.cvtColor(llr, cv2.COLOR_RGB2BGR) # cv2.imwrite(self.main_path + "lr" + ".jpg", llr*255 ) return data
def __getitem__(self, index): filename_hr = os.path.join(self.data_root, self.datasets_hr.iloc[index, 0]) image_hr = cv2.imread(filename_hr) image_hr = torch.from_numpy(image_hr) image_hr, image_lr, filename_lr = lr_data(image_hr, filename_hr, self.noises_mean, self.noise_yuv, 1) ## test # cv2.imwrite("./test/" + "hr" + ".jpg", image_hr) # cv2.imwrite("./test/" + "lr" + ".jpg", image_lr) # image_lr = image_lr.to(self.device) # image_hr = image_hr.to(self.device) data = {'lr': image_lr, 'hr': image_hr, 'filename': filename_lr} # data = [image_lr, image_hr] return data
def __getitem__(self, index): filename_hr = os.path.join(self.data_root, self.datasets_hr.iloc[index, 0]) # # PIL read image_hr = Image.open(filename_hr).convert('RGB') image_hr = self.transform(image_hr) image_hr = image_hr.permute(1, 2, 0) image_hr = image_hr * 255 # cv2 read # image_hr = cv2.imread(filename_hr) # image_hr = torch.from_numpy(image_hr) image_hr, image_lr, filename_lr = lr_data( self.imgfilter_l, self.imgfilter_h, self.with_possion, self.with_texturesyn_thesis, image_hr, filename_hr, self.noises_mean, self.noise_yuv, 1) image_hr = torch.clamp(image_hr / 255, 0, 1) #high resolution image_lr = torch.clamp(image_lr / 255, 0, 1) #low resolution ## add gauss blur hf = image_hr - torch.from_numpy( cv2.GaussianBlur(image_hr.numpy(), (self.gauss_kernel, self.gauss_kernel), 0)) data = { 'lr': image_lr, 'hr': image_hr, 'hf': hf, 'filename': filename_lr } # # test # hhr = image_hr.numpy() # hhr = cv2.cvtColor(hhr, cv2.COLOR_RGB2BGR) # cv2.imwrite("./hr" + ".jpg", hhr*255 ) # llr = image_lr.numpy() # llr = cv2.cvtColor(llr, cv2.COLOR_RGB2BGR) # cv2.imwrite( "./lr" + ".jpg", llr*255 ) # hhf = hf.numpy() # hhf = cv2.cvtColor(hhf, cv2.COLOR_RGB2BGR) # cv2.imwrite("./hf_5" + ".jpg", hhf * 255*10) return data
def __getitem__(self, index): filename_hr = os.path.join(self.data_root, self.datasets_hr.iloc[index, 0]) # # PIL read image_hr = Image.open(filename_hr).convert('RGB') image_hr = self.transform(image_hr) # noise_yuv = self.transform(self.noise_yuv) # noise_yuv = [self.transform(n) for n in self.noise_yuv] image_hr = image_hr.permute(1, 2, 0) image_hr = image_hr * 255 # noise_yuv = noise_yuv*255 # cv2 read # image_hr = cv2.imread(filename_hr) # image_hr = torch.from_numpy(image_hr) image_hr, image_lr, filename_lr = lr_data(image_hr, filename_hr, self.noises_mean, self.noise_yuv, 1) ## test # cv2.imwrite(self.data_root + "hr" + ".jpg", image_hr) # cv2.imwrite("./test/" + "lr" + ".jpg", image_lr) # image_hr = image_hr.numpy() # image_lr = image_lr.numpy() # image_hr = Image.fromarray(cv2.cvtColor(image_hr, cv2.COLOR_BGR2RGB).astype(np.uint8)) # image_lr = Image.fromarray(cv2.cvtColor(image_lr, cv2.COLOR_BGR2RGB).astype(np.uint8)) # # # image_hr = self.transform(image_hr) # image_lr = self.transform(image_lr) # image_hr = image_hr.permute(1, 2, 0) # image_lr = image_lr.permute(1, 2, 0) # image_hr = torch.from_numpy(image_hr) # image_lr = torch.from_numpy(image_lr) data = {'lr': image_lr, 'hr': image_hr, 'filename': filename_lr} return data