Пример #1
0
def test_tracks_io():
    d = data_generation.CubeDataset(2, 100, 0.0, 0.3)

    output = StringIO()

    tracks_before = d.tracks
    opensfm.tracking.save_tracks_graph(output, tracks_before)
    output.seek(0)
    tracks_after = opensfm.tracking.load_tracks_graph(output)

    assert tracks_before.nodes() == tracks_after.nodes()
    assert tracks_before.edges() == tracks_after.edges()
def synthetic_reconstruction():
    cube_dataset = data_generation.CubeDataset(10, 100, 0.001, 0.3)
    synthetic_reconstruction = types.Reconstruction()
    for shot in cube_dataset.shots.values():
        synthetic_reconstruction.add_shot(shot)
    for camera in cube_dataset.cameras.values():
        synthetic_reconstruction.add_camera(camera)
    for point_id, point in cube_dataset.points.items():
        point_type = types.Point()
        point_type.coordinates = point
        point_type.id = point_id
        synthetic_reconstruction.add_point(point_type)
    return synthetic_reconstruction, cube_dataset.tracks
Пример #3
0
def test_robust_match():
    d = data_generation.CubeDataset(2, 100, 0.1, 0.3)
    p1 = np.array([v['feature'] for k, v in d.tracks['shot0'].iteritems()])
    p2 = np.array([v['feature'] for k, v in d.tracks['shot1'].iteritems()])
    camera1 = d.shots['shot0'].camera
    camera2 = d.shots['shot1'].camera
    num_points = len(p1)
    inlier_matches = np.array([(i, i) for i in range(num_points)])
    outlier_matches = np.random.randint(num_points, size=(num_points / 2, 2))
    matches = np.concatenate((inlier_matches, outlier_matches))
    config = opensfm.config.default_config()
    rmatches = opensfm.matching.robust_match(p1, p2, camera1, camera2, matches,
                                             config)
    assert num_points <= len(rmatches) <= len(matches)