Пример #1
0
shuffle = True
ssd_train = False

validation_batch_size = 32

patience=30

# In[8]:


train_generator = train_dataset.generate(batch_size=train_batch_size,
                                         shuffle=shuffle,
                                         ssd_train=ssd_train,
                                         random_rotation=20,
                                         translate=(0.2, 0.2),
                                         scale=(0.8, 1.2),
                                         flip=0.5,
                                         divide_by_stddev=255,
                                         equalize=True,
                                         returns={'processed_labels'},
                                         resize=(img_height, img_width))

validation_generator = validation_dataset.generate(batch_size=validation_batch_size,
                                                   shuffle=shuffle,
                                                   ssd_train=ssd_train,
                                                   divide_by_stddev=255,
                                                   equalize=True,
                                                   returns={'processed_labels'},
                                                   resize=(img_height, img_width))

print("Number of images in the dataset:", train_dataset.get_n_samples())
Пример #2
0
epochs = 100

train_batch_size = 64
shuffle = True
ssd_train = False

validation_batch_size = 32

# In[11]:

train_generator = train_dataset.generate(
    batch_size=train_batch_size,
    shuffle=shuffle,
    ssd_train=ssd_train,
    #flip=0.5,
    equalize=True,
    divide_by_stddev=255,
    returns={'processed_labels'},
    resize=(img_height, img_width))

validation_generator = validation_dataset.generate(
    batch_size=validation_batch_size,
    shuffle=shuffle,
    ssd_train=ssd_train,
    #flip=0.5,
    equalize=True,
    divide_by_stddev=255,
    returns={'processed_labels'},
    resize=(img_height, img_width))
Пример #3
0
print("Size of validation dataset: ", num_val_images, " images")

# -----------------------------------------------------------------------------
#                   Dataset Generator
# -----------------------------------------------------------------------------

# Setting same batch size for both generators here.

train_generator = train_dataset.generate(batch_size=train_batch_size,
                                         convert_colors_to_ids=False,
                                         convert_ids_to_ids=False,
                                         convert_to_one_hot=True,
                                         void_class_id=None,
                                         random_crop=False,
                                         crop=False,
                                         resize=False,
                                         brightness=False,
                                         flip=0.5,
                                         translate=False,
                                         scale=False,
                                         gray=False,
                                         to_disk=False,
                                         shuffle=True)

val_generator = val_dataset.generate(batch_size=val_batch_size,
                                     convert_colors_to_ids=False,
                                     convert_ids_to_ids=False,
                                     convert_to_one_hot=True,
                                     void_class_id=None,
                                     random_crop=False,
                                     crop=False,
Пример #4
0
            epochs = 90

            train_batch_size = 64
            shuffle = True
            ssd_train = False

            validation_batch_size = 32


            # In[15]:

            test_generator = test_dataset.generate(batch_size=train_batch_size,
                                                   shuffle=shuffle,
                                                   ssd_train=ssd_train,
                                                   divide_by_stddev = 225,
                                                   #equalize=True,
                                                   returns={'processed_labels'},
                                                   resize=(img_height, img_width))


            # In[5]:


            print("Number of images in the dataset:", test_dataset.get_n_samples())


            # In[6]:


            steps = test_dataset.get_n_samples()/train_batch_size