from data_load import getData import pandas as pd import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt df = getData('M') pdf = df.iloc[:, 0:3] plt.figure() pdf.plot() plt.legend(loc='best') print('hi')
from conf import Conf from scenario import SCENARIOS from model import getModel from data_load import getData, prepareData, normaliz from train_data import getTrainData from resana import ResAnaysis if __name__ == '__main__': global C C = Conf() res = [] df = getData(C.STRFRQ[C.DATAFREQ]) # df = prepareData(df) ndf = normaliz(df) dfY = df[C.Y] for sn in SCENARIOS: #encoder.add(Dropout(0.5)) #encoder.add(LSTM(output_dim=C.XOUT_DIM, return_sequences=True, stateful=True)) C.overwrite(sn) print(" - " + C.SCENARIO) train_Xs, train_Y = getTrainData(C, ndf, dfY) val_Xs, val_Y = getTrainData(C, ndf, dfY, 'test') model = getModel(C) #cost = model.train_on_batch([train_Xs[i][0:C.BATCH_SIZE] for i in range(len(train_Xs))], train_Y[0:C.BATCH_SIZE]) #print(cost) re = model.fit(train_Xs, train_Y, batch_size=C.BATCH_SIZE,
# Importing dependencies import numpy as np import pandas as pd from data_load import getData from os import chdir, path from mne.filter import filter_data def low_pass(data, sfreq, hfreq): channels = data.columns[:16].values for i in channels: print("Low-pass filtering channel %i / %i: %s" % (np.where(channels == i)[0] + 1, len(channels), i)) data[i] = filter_data(data[i], sfreq=sfreq, l_freq=None, h_freq=hfreq, verbose=False) return data if __name__ == "__main__": # Set working directory chdir(path.dirname(__file__)) data = getData() data_low_pass = low_pass(data, 64, 8) print(data.describe()) print(data_low_pass.describe())