def main():
    with open("config.json") as json_file:
        conf = json.load(json_file)
    dataset_path = os.path.join(conf['data']['dataset_path'],
                                conf['data']['dataset_file'])
    device = conf['train']['device']

    model = AutoEncoder(in_channels=1,
                        dec_channels=1,
                        latent_size=conf['model']['latent_size'])
    model = model.to(device)
    model.load_state_dict(torch.load(load_path))

    dspites_dataset = Dspites(dataset_path)
    train_val = train_val_split(dspites_dataset)
    val_test = train_val_split(train_val['val'], val_split=0.2)

    data_loader_train = DataLoader(train_val['train'],
                                   batch_size=conf['train']['batch_size'],
                                   shuffle=True,
                                   num_workers=2)
    data_loader_val = DataLoader(val_test['val'],
                                 batch_size=200,
                                 shuffle=False,
                                 num_workers=1)
    data_loader_test = DataLoader(val_test['train'],
                                  batch_size=200,
                                  shuffle=False,
                                  num_workers=1)

    print('autoencoder training')
    print('frozen encoder: ', freeze_encoder)
    print('train dataset length: ', len(train_val['train']))
    print('val dataset length: ', len(val_test['val']))
    print('test dataset length: ', len(val_test['train']))

    print('latent space size:', conf['model']['latent_size'])
    print('batch size:', conf['train']['batch_size'])

    loss_function = nn.BCELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    model.train()
    if freeze_encoder:
        model.freeze_encoder()

    for epoch in range(25):
        if epoch > 15:
            for param in optimizer.param_groups:
                param['lr'] = max(0.00001,
                                  param['lr'] / conf['train']['lr_decay'])
                print('lr: ', param['lr'])

        loss_list = []
        model.train()

        for batch_i, batch in enumerate(data_loader_train):
            augment_transform = np.random.choice(augment_transform_list1)
            batch1 = image_batch_transformation(batch, augment_transform)
            loss = autoencoder_step(model, batch, device, loss_function)
            loss_list.append(loss.item())
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        mean_epoch_loss = sum(loss_list) / len(loss_list)
        model.eval()
        validation_loss = autoencoder_validation(data_loader_val, model,
                                                 device, loss_function)
        if epoch == 0:
            min_validation_loss = validation_loss
        else:
            min_validation_loss = min(min_validation_loss, validation_loss)
        print('epoch {0}, loss: {1:2.5f}, validation: {2:2.5f}'.format(
            epoch, mean_epoch_loss, validation_loss))
        if min_validation_loss == validation_loss:
            #pass
            torch.save(model.state_dict(), save_path)

    model.load_state_dict(torch.load(save_path))
    test_results = autoencoder_validation(data_loader_test, model, device,
                                          loss_function)
    print('test result: ', test_results)
Пример #2
0
        print('         autoencoder loss: {0:2.5f}, BCE val: {1:2.5f}'.format(
            mean_epoch_loss, validation_loss))


if __name__ == "__main__":
    device = conf['train']['device']

    model = AutoEncoder(in_channels=1,
                        dec_channels=1,
                        latent_size=conf['model']['latent_size'])
    model = model.to(device)
    model.load_state_dict(torch.load(load_path))

    dataset_path = os.path.join(conf['data']['dataset_path'],
                                conf['data']['dataset_file'])
    dspites_dataset = Dspites(dataset_path)
    train_val = train_val_split(dspites_dataset)
    val_test = train_val_split(train_val['val'], val_split=0.2)

    data_loader_train = DataLoader(train_val['train'],
                                   batch_size=conf['train']['batch_size'],
                                   shuffle=True,
                                   num_workers=2)
    data_loader_val = DataLoader(val_test['val'],
                                 batch_size=200,
                                 shuffle=False,
                                 num_workers=1)
    data_loader_test = DataLoader(val_test['train'],
                                  batch_size=200,
                                  shuffle=False,
                                  num_workers=1)
Пример #3
0
def main():
    loss_function = nn.BCELoss()

    with open("config.json") as json_file:
        conf = json.load(json_file)
    device = conf['train']['device']

    dataset_path = os.path.join(conf['data']['dataset_path'],
                                conf['data']['dataset_file'])
    dspites_dataset = Dspites(dataset_path)
    train_val = train_val_split(dspites_dataset)
    val_test = train_val_split(train_val['val'], val_split=0.2)

    data_loader_train = DataLoader(train_val['train'],
                                   batch_size=conf['train']['batch_size'],
                                   shuffle=True,
                                   num_workers=2)
    data_loader_val = DataLoader(val_test['val'],
                                 batch_size=200,
                                 shuffle=False,
                                 num_workers=1)
    data_loader_test = DataLoader(val_test['train'],
                                  batch_size=200,
                                  shuffle=False,
                                  num_workers=1)

    print('metric learning')
    print('train dataset length: ', len(train_val['train']))
    print('val dataset length: ', len(val_test['val']))
    print('test dataset length: ', len(val_test['train']))

    print('latent space size:', conf['model']['latent_size'])
    print('batch size:', conf['train']['batch_size'])
    print('margin:', conf['train']['margin'])

    loss_list = []
    model = AutoEncoder(in_channels=1,
                        dec_channels=1,
                        latent_size=conf['model']['latent_size'])
    model = model.to(device)

    optimizer = torch.optim.Adam(model.parameters(), lr=conf['train']['lr'])

    model.train()
    if load_path:
        model.load_state_dict(torch.load(load_path))

    for epoch in range(10):
        for param in optimizer.param_groups:
            param['lr'] = max(0.00001, param['lr'] / conf['train']['lr_decay'])
            print('lr: ', param['lr'])
        loss_list = []

        for batch_i, batch in enumerate(data_loader_train):
            # if batch_i == 1000:
            #     break
            batch = batch['image']
            batch = batch.type(torch.FloatTensor)
            batch = batch.to(device)
            loss = triplet_step(model, batch, transform1, transform2)
            loss_list.append(loss.item())
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        recall, recall10 = recall_validation(model, data_loader_val,
                                             transform1, transform2, device)
        if epoch == 0:
            min_validation_recall = recall
        else:
            min_validation_recall = min(min_validation_recall, recall)
        if min_validation_recall == recall and save_path:
            torch.save(model.state_dict(), save_path)
        print('epoch {0}, loss {1:2.4f}'.format(
            epoch,
            sum(loss_list) / len(loss_list)))
        print('recall@3: {0:2.4f}, recall 10%: {1:2.4f}'.format(
            recall, recall10))

    model.load_state_dict(torch.load(save_path))
    recall, recall10 = recall_validation(model, data_loader_test, transform1,
                                         transform2)
    print('test recall@3: {0:2.4f}, recall@3 10%: {1:2.4f}'.format(
        recall, recall10))