def split_val_test_to_batches(self): # Split the val and test sets to batchs, no shuffling is needed graphs, labels = helper.group_same_size(self.val_graphs, self.val_labels) graphs, labels = helper.split_to_batches(graphs, labels, self.batch_size) self.num_iterations_val = len(graphs) self.val_graphs_batches, self.val_labels_batches = graphs, labels if self.config.dataset_name == 'QM9': # Benchmark graphs have no test sets graphs, labels = helper.group_same_size(self.test_graphs, self.test_labels) graphs, labels = helper.split_to_batches(graphs, labels, self.batch_size) self.num_iterations_test = len(graphs) self.test_graphs_batches, self.test_labels_batches = graphs, labels
def reshuffle_data(self): graphs, labels = helper.group_same_size(self.train_graphs, self.train_labels) graphs, labels = helper.shuffle_same_size(graphs, labels) graphs, labels = helper.split_to_batches(graphs, labels, self.batch_size) self.num_iterations_train = len(graphs) graphs, labels = helper.shuffle(graphs, labels) self.iter = zip(graphs, labels)