Пример #1
0
def main(config):
    # For fast training.
    cudnn.benchmark = True

    # Create directories if not exist.
    if not os.path.exists(config.log_dir):
        os.makedirs(config.log_dir)
    if not os.path.exists(config.model_save_dir):
        os.makedirs(config.model_save_dir)
    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)
    if not os.path.exists(config.result_dir):
        os.makedirs(config.result_dir)

    # Data loader.
    celeba_loader = None
    rafd_loader = None

    if config.dataset in ['CelebA', 'Both']:
        celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs,
                                   config.celeba_crop_size, config.image_size, config.batch_size,
                                   'CelebA', config.mode, config.num_workers)
    if config.dataset in ['RaFD', 'Both']:
        rafd_loader = get_loader(config.rafd_image_dir, None, None,
                                 config.rafd_crop_size, config.image_size, config.batch_size,
                                 'RaFD', config.mode, config.num_workers)
    

    # Solver for training and testing StarGAN.
    solver = Solver(celeba_loader, rafd_loader, config)

    if config.mode == 'train':
        if config.dataset in ['CelebA', 'RaFD']:
            solver.train()
        elif config.dataset in ['Both']:
            solver.train_multi()
    elif config.mode == 'test':
        if config.dataset in ['CelebA', 'RaFD']:
            solver.test()
        elif config.dataset in ['Both']:
            solver.test_multi()
Пример #2
0
def train(model, elogger, train_set, eval_set):
    # record the experiment setting
    elogger.log(str(model))
    elogger.log(str(args._get_kwargs()))

    if torch.cuda.is_available():
        model.cuda()

    optimizer = optim.Adam(model.parameters(), lr = 1e-3)

    for epoch in range(args.epochs):
        model.train()
        print('Training on epoch {}'.format(epoch))
        for input_file in train_set:
            print('Train on file {}'.format(input_file))

            # data loader, return two dictionaries, attr and traj
            data_iter = data_loader.get_loader(input_file, args.batch_size)

            running_loss = 0.0

            for idx, (attr, traj) in enumerate(data_iter):
                # transform the input to pytorch variable
                attr, traj = utils.to_var(attr), utils.to_var(traj)

                _, loss = model.eval_on_batch(attr, traj, config)

                # update the model
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                running_loss += loss.data.item()
                print('\r Progress {:.2f}%, average loss {}'.format((idx + 1) * 100.0 / len(data_iter), running_loss / (idx + 1.0)), end=' ')
            print()
            elogger.log('Training Epoch {}, File {}, Loss {}'.format(epoch, input_file, running_loss / (idx + 1.0)))

        # evaluate the model after each epoch
        evaluate(model, elogger, eval_set, save_result = False)

        # save the weight file after each epoch
        weight_name = '{}_{}'.format(args.log_file, str(datetime.datetime.now()))
        elogger.log('Save weight file {}'.format(weight_name))
        torch.save(model.state_dict(), './saved_weights/weights')
Пример #3
0
def main(config):
    if config.outf is None:
        config.outf = 'samples'
    os.system('mkdir {0}'.format(config.outf))

    config.manual_seed = random.randint(1, 10000)
    print("Random Seed: ", config.manual_seed)
    random.seed(config.manual_seed)
    torch.manual_seed(config.manual_seed)

    if config.cuda:
        torch.cuda.manual_seed_all(config.manual_seed)

    cudnn.benchmark = True

    if torch.cuda.is_available() and not config.cuda:
        print(
            "WARNING: You have a CUDA device, so you should probably run with --cuda"
        )

    if not config.training:
        config.stage = 2

    if config.stage == 1:
        config.batch_size = 128
        config.image_size = 64

    else:
        config.batch_size = 40
        config.image_size = 256

    if config.training:
        data_loader = get_loader(_dataset=config.dataset,
                                 dataroot=config.dataroot,
                                 batch_size=config.batch_size,
                                 num_workers=int(config.workers),
                                 image_size=config.image_size)

        trainer = Trainer(config, data_loader, None)
        trainer.train()
    else:
        datapath = '%s/test/val_captions.t7' % (config.dataroot)
        trainer = Trainer(config, None, datapath)
        trainer.sample()
Пример #4
0
def main():
    checkpoint_path = './models/checkpoint_2_7340.pt'
    vocab_path = './data/vocab.pkl'

    caption_dir = 'data/annotations/'
    val_dir = 'data/val2014'
    batch_size = 32
    num_workers = 2

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    state = torch.load(checkpoint_path)
    with open(vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    encoder = state['encoder'].to(device)
    decoder = state['decoder'].to(device)

    encoder.eval()
    decoder.eval()

    transform = transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    val_annotations = os.path.join(
        caption_dir, "captions_{}.json".format(os.path.basename(val_dir)))
    val_loader = get_loader(val_dir,
                            val_annotations,
                            vocab,
                            transform,
                            batch_size,
                            shuffle=True,
                            num_workers=num_workers)

    # ids = val_loader.dataset.ids

    # val_loader.dataset.ids = np.random.choice(val_loader.dataset.ids, 2000, replace=False)

    print("Scoring model...")
    score = bleu_score(val_loader, encoder, decoder, device)

    print("BLEU-4 SCORE: {:.4f}".format(score * 100))
Пример #5
0
def main(config):
    # For fast training.
    cudnn.benchmark = True

    # Create directories if not exist.
    if not os.path.exists(config.log_dir):
        os.makedirs(config.log_dir)
    if not os.path.exists(config.model_save_dir):
        os.makedirs(config.model_save_dir)
    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)
    if not os.path.exists(config.result_dir):
        os.makedirs(config.result_dir)

    # Data loader.
    #celeba_loader = None
    #rafd_loader = None

    #if config.dataset in ['CelebA', 'Both']:
    celeba_loader = get_loader(config.celeba_image_dir, config.attr_path,
                               config.selected_attrs, config.celeba_crop_size,
                               config.image_size, config.batch_size, 'CelebA',
                               config.mode, config.num_workers)
    '''
	if config.dataset in ['RaFD', 'Both']:
        rafd_loader = get_loader(config.rafd_image_dir, None, None,
                                 config.rafd_crop_size, config.image_size, config.batch_size,
                                 'RaFD', config.mode, config.num_workers)
    '''

    # Solver for training and testing StarGAN.
    solver = Solver(
        celeba_loader,
        config)  #solver = Solver(celeba_loader, rafd_loader, config)

    if config.mode == 'train':
        #if config.dataset in ['CelebA', 'RaFD']:
        solver.train()
        #elif config.dataset in ['Both']:
        #    solver.train_multi()
    elif config.mode == 'test':
        #if config.dataset in ['CelebA', 'RaFD']:
        solver.test()
Пример #6
0
    def __init__(self, config):
        self.image_size = 299  #Inception net condition
        self.lr = 0.0001
        self.log_step = 100
        self.selected_attrs = config.selected_attrs
        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')
        self.buildIncNet()

        self.save_incDir = config.inc_net_dir
        self.pretrained_incNet = config.pretrained_incNet
        self.dataset = config.dataset
        self.test_dataset = get_loader(config.celeba_image_dir,
                                       config.attr_path,
                                       config.selected_attrs,
                                       image_size=self.image_size,
                                       num_workers=config.num_workers,
                                       dataset=config.dataset,
                                       mode='test')
Пример #7
0
def train(model):
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

    data_iter = data_loader.get_loader(batch_size=args.batch_size)

    for epoch in range(args.epochs):
        model.train()

        run_loss = 0.0

        for idx, data in enumerate(data_iter):
            data = utils.to_var(data)
            ret = model.run_on_batch(data, optimizer, epoch)

            run_loss += ret['loss'].item()

            print '\r Progress epoch {}, {:.2f}%, average loss {}'.format(epoch, (idx + 1) * 100.0 / len(data_iter), run_loss / (idx + 1.0)),

        evaluate(model, data_iter)
Пример #8
0
def main(config):
    # For fast training.
    cudnn.benchmark = True

    # Create directories if not exist.
    if not os.path.exists(config.log_dir):
        os.makedirs(config.log_dir)
    if not os.path.exists(config.model_save_dir):
        os.makedirs(config.model_save_dir)
    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)

    # Data loader.
    vcc_loader = get_loader(hparams)

    # Solver for training
    solver = Solver(vcc_loader, config, hparams)

    solver.train()
def main(config):
    svhn_loader, mnist_loader, svhn_test_loader, mnist_test_loader = get_loader(config)

    solver = Solver(config, svhn_loader, mnist_loader)
    cudnn.benchmark = True

    # create directories if not exist
    if not os.path.exists(config.model_path):
        os.makedirs(config.model_path)
    if not os.path.exists(config.sample_path):
        os.makedirs(config.sample_path)

    base = config.log_path
    filename = os.path.join(base, str(config.max_items))
    if not os.path.isdir(base):
        os.mkdir(base)
    logging.basicConfig(filename=filename, level=logging.DEBUG)

    if config.mode == 'train':
        solver.train()
Пример #10
0
def main():
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    val_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224)])

    val_loader = get_loader(opts.img_path,
                            val_transform,
                            vocab,
                            opts.data_path,
                            partition='test',
                            batch_size=opts.batch_size,
                            shuffle=False,
                            num_workers=opts.workers,
                            pin_memory=True)
    print('Validation loader prepared.')

    test(val_loader)
Пример #11
0
def main(config):
    # For fast training
    cudnn.benchmark = True

    # Create directories if not exist
    mkdir(config.log_path)
    mkdir(config.model_save_path)
    mkdir(config.sample_path)
    mkdir(config.result_path)

    data_loader = get_loader(config.data_path, config.image_size,
                             config.crop_size, config.batch_size, transform=True, dataset='PascalVOC2012', mode=config.mode)

    # Solver
    solver = Solver(data_loader, vars(config))

    if config.mode == 'train':
        solver.train()
    elif config.mode == 'test':
        solver.test()
Пример #12
0
def initialize_for_test(params):
    data_loader = get_loader(params, mode='test')
    encoder_file = os.path.join(params.encoder_save,
                                'epoch-%d.pkl' % params.num_epochs)
    decoder_file = os.path.join(params.decoder_save,
                                'epoch-%d.pkl' % params.num_epochs)
    vocab_size = len(data_loader.dataset.vocab)

    # Initialize the encoder and decoder, and set each to inference mode.
    encoder = Encoder(params)
    decoder = Decoder(params, vocab_size)
    encoder.eval()
    decoder.eval()

    # Load the trained weights.
    encoder.load_state_dict(torch.load(encoder_file))
    decoder.load_state_dict(torch.load(decoder_file))
    encoder.to(params.device)
    decoder.to(params.device)
    return data_loader, encoder, decoder
Пример #13
0
def main(config):
    cudnn.benchmark = True
    
    data_loader = get_loader(image_path=config.image_path,
                             image_size=config.image_size,
                             batch_size=config.batch_size,
                             num_workers=config.num_workers)
    
    solver = Solver(config, data_loader)
    
    # Create directories if not exist
    if not os.path.exists(config.model_path):
        os.makedirs(config.model_path)
    if not os.path.exists(config.sample_path):
        os.makedirs(config.sample_path)
    
    # Train and sample the images
    if config.mode == 'train':
        solver.train()
    elif config.mode == 'sample':
        solver.sample()
Пример #14
0
def main():
    transform = transforms.Compose(
        [transforms.Resize(30), transforms.ToTensor()])

    loader = get_loader("./data/images_background", 1, 10, True, transform)

    for i, (images_1, images_2, label) in enumerate(loader):
        print("example %d" % i)
        draw_image(images_1.numpy())
        draw_image(images_2.numpy())

        label = label.numpy()
        if label == 1:
            print("same")
        else:
            print("different")

        images_1 = images_1.to(device)

        time.sleep(3)
        print("\n\n")
Пример #15
0
def main(config):
    # For fast training.
    cudnn.benchmark = True

    # Create directories if not exist.
    if not os.path.exists(config.log_dir):
        os.makedirs(config.log_dir)
    if not os.path.exists(config.model_save_dir):
        os.makedirs(config.model_save_dir)
    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)

    # Data loader.
    train_loader = get_loader(config.train_data_dir, config.batch_size, 'train', num_workers=config.num_workers)
    test_loader = TestDataset(config.test_data_dir, config.wav_dir, src_spk='p262', trg_spk='p272')

    # Solver for training and testing StarGAN.
    solver = Solver(train_loader, test_loader, config)

    if config.mode == 'train':    
        solver.train()
Пример #16
0
def main(config):
    cudnn.benchmark = True

    data_loader = get_loader(image_path=config.image_path,
                             image_size=config.image_size,
                             batch_size=config.batch_size,
                             num_workers=config.num_workers)

    solver = Solver(config, data_loader)

    # Create directories if not exist
    if not os.path.exists(config.model_path):
        os.makedirs(config.model_path)
    if not os.path.exists(config.sample_path):
        os.makedirs(config.sample_path)

    # Train and sample the images
    if config.mode == 'train':
        solver.train()
    elif config.mode == 'sample':
        solver.sample()
Пример #17
0
def extract_features(root, files, transform, batch_size, shuffle, num_workers,
                     model):

    dataloader = get_loader(root, files, transform, batch_size, shuffle,
                            num_workers)
    model = model.cuda()
    model.eval()

    features = []
    imnames = []
    n_iters = len(dataloader)
    for i, (images, names) in enumerate(dataloader):
        images = Variable(images).cuda()
        feas = model(images).cpu()
        features.append(feas.data)
        imnames.extend(names)

        if (i + 1) % 100 == 0:
            print 'iter [%d/%d] finsihed.' % (i, n_iters)

    return torch.cat(features, 0), imnames
Пример #18
0
def main(config):
    cudnn.benchmark = True

    if not os.path.exists(config.save_path):
        os.makedirs(config.save_path)
    if not os.path.exists(config.infer_path):
        os.makedirs(config.infer_path)

    num_users, num_items, train_loader, test_loader, infer_loader, num_to_user_id, num_to_item_id  \
        = get_loader(data_path = config.data_path,
                     train_negs = config.train_negs,
                     test_negs = config.test_negs,
                     batch_size = config.batch_size,
                     num_workers = config.num_workers)

    solver = Solver(config, num_users, num_items)

    if config.mode == 'train':
        solver.train(train_loader, test_loader)
    elif config.mode == 'infer':
        solver.infer(infer_loader, num_to_user_id, num_to_item_id)
Пример #19
0
def main(config):
    # For fast training
    cudnn.benchmark = True

    # Create directories if not exist
    mkdir(config.log_path)
    mkdir(config.model_save_path)

    data_loader = get_loader(config.data_path,
                             batch_size=config.batch_size,
                             mode=config.mode)

    # Solver
    solver = Solver(data_loader, vars(config))

    if config.mode == 'train':
        solver.train()
    elif config.mode == 'test':
        solver.test()

    return solver
Пример #20
0
def model_setup(config):
    """
    Set up the directories and the data before creating the whole model

    :param config: (Hyperparams) Dictionary of the hyperparameters as a class
    :return: (nn.Module) The model of the DAGMM
    """
    # For fast training
    cudnn.benchmark = True  # Good if input size doesn't change (bad otherwise)

    # Create directories if they don't exist
    make_directory(config.model_save_path)
    make_directory(config.fig_save_path)

    # Create data loader
    data_loader = get_loader(config.data_path,
                             batch_size=config.batch_size,
                             train_ratio=config.train_ratio)

    # Create Model
    return Model(data_loader, vars(config))
Пример #21
0
    def train(self, config):
        train_dataset = get_loader(config.celeba_image_dir,
                                   config.attr_path,
                                   config.selected_attrs,
                                   image_size=self.image_size,
                                   num_workers=config.num_workers,
                                   dataset=config.dataset)

        print('Start Training...')
        start_time = time.time()
        max_acc, epochs = 0, 50
        for p in range(epochs):
            for i, data in enumerate(train_dataset):
                img, label = data
                img = img.to(self.device)
                label = label.to(self.device)

                batch_pred = self.inc_net(img)
                loss = self.classification_loss(batch_pred, label,
                                                config.dataset)
                self.opt.zero_grad()
                loss.backward()
                self.opt.step()

                if i % self.log_step == 0:
                    et = time.time() - start_time
                    et = str(datetime.timedelta(seconds=et))[:-7]

                    acc = self.test()
                    print("Test Accuracy: ", acc)
                    if acc > max_acc:
                        path = os.path.join(self.save_incDir,
                                            '{}-{}-incNet.ckpt'.format(p, i))
                        torch.save(self.inc_net.state_dict(), path)
                        max_acc = acc

                    log = "Elapsed [{}], Epoch[{}] - Iteration [{}/{}] , loss [{}], max_acc[{}]".format(
                        et, p, i + 1, len(train_dataset), loss.item(), max_acc)
                    print(log)
Пример #22
0
def evaluate(args, device, model, test_dataset, test_dataset_name):
    tqdm.write(f'evaluating for {test_dataset_name}')
    tqdm.write('test data size: {}'.format(len(test_dataset)))

    # Build data loader
    test_loader = get_loader(test_dataset,
                             args.batch_size,
                             shuffle=False,
                             num_workers=args.num_workers,
                             drop_last=False)

    criterion = nn.BCEWithLogitsLoss()

    with torch.no_grad():
        loss_values = []
        all_predictions = []
        all_targets = []
        for video_ids, frame_ids, images, targets in tqdm(
                test_loader, desc=test_dataset_name):
            images = images.to(device)
            targets = targets.to(device)

            outputs = model(images)
            loss = criterion(outputs, targets)
            loss_values.append(loss.item())

            predictions = outputs > 0.0
            all_predictions.append(predictions)
            all_targets.append(targets)

        val_loss = sum(loss_values) / len(loss_values)

        all_predictions = torch.cat(all_predictions).int()
        all_targets = torch.cat(all_targets).int()
        test_accuracy = (all_predictions == all_targets
                         ).sum().float().item() / all_targets.shape[0]

        tqdm.write('Testing results - Loss: {:.3f}, Acc: {:.3f}'.format(
            val_loss, test_accuracy))
Пример #23
0
def main(args):
    with open(os.path.join(args.root_dir, 'vocab.pkl'), 'rb') as f:
        vocab = pickle.load(f)
    data_type = args.data_type
    data_loader = get_loader(args.root_dir,
                             vocab,
                             args.batch_size,
                             data_type,
                             shuffle=True,
                             num_workers=args.num_workers,
                             debug=args.debug)

    print('Iterating the dataset')
    print("Length of data loader: " + str(len(data_loader)))
    for i, (features, captions, lengths) in enumerate(data_loader):
        print("Index: " + str(i))
        #print("Features shape: ")
        #print(features.shape)
        print("Captions shape: ")
        print(captions.shape)
        print("Lengths: ")
        print(len(lengths))
Пример #24
0
def eval(nb_test):
    train_loader, dataset = get_loader(
        "dataset/flickr8k/images/",
        annotation_file="dataset/flickr8k/captions.txt",
        transform=transform,
        num_workers=2)
    loop = tqdm(enumerate(train_loader), total=nb_test, leave=False)

    embed_size = 256
    hidden_size = 256
    vocab_size = len(dataset.vocab)
    num_layers = 1

    model = Img2Text(embed_size, hidden_size, vocab_size,
                     num_layers).to(device)
    checkpoint = torch.load("my_checkpoint.pth.tar")
    model.load_state_dict(checkpoint["state_dict"])

    fig = plt.figure(figsize=(10, 10))
    model.eval()
    with torch.no_grad():
        for idx, (imgs, captions) in loop:
            if idx + 1 == nb_test:
                break

            ax = fig.add_subplot(2, 2, idx + 1)
            predicted_str, predicted_int = model.caption_image(
                imgs.to(device), dataset.vocab)
            #[dataset.vocab.itos[idx] for idx in result_caption]
            captions = [
                dataset.vocab.itos[idx]
                for idx in captions.squeeze(-1).tolist()
            ]

            score = bleu_score([predicted_str[1:-1]], [captions])
            ax.imshow(imgs.squeeze(0).permute(1, 2, 0))
            text = f"CORRECT:{captions[1:-1]}\nPREDICTED:{predicted_str[1:-1]}\nBleu score:{score}"
            ax.title.set_text(text)
    plt.show()
Пример #25
0
    def test_multi(self, sample_dir, result_dir):
        """Translate images using StarGAN trained on multiple datasets."""
        # Load the trained generator.
        # self.restore_model(self.test_iters)
        config = self.config
        test_loader = get_loader(config.celeba_image_dir, config.attr_path,
                                 config.selected_attrs,
                                 config.celeba_crop_size, config.image_size,
                                 config.batch_size, 'CelebA', config.mode,
                                 sample_dir, config.num_workers)
        with torch.no_grad():
            for i, (x_real, c_org) in enumerate(test_loader):
                # Prepare input images and target domain labels.
                x_real = x_real.to(self.device)
                c_rafd_list = self.create_labels(c_org, self.c2_dim, 'RaFD')
                zero_celeba = torch.zeros(x_real.size(0), self.c_dim).to(
                    self.device)  # Zero vector for CelebA.
                mask_rafd = self.label2onehot(torch.ones(
                    x_real.size(0)), 2).to(self.device)  # Mask vector: [0, 1].

                # Translate images.
                x_fake_list = [x_real]
                for c_rafd in c_rafd_list:
                    c_trg = torch.cat([zero_celeba, c_rafd, mask_rafd], dim=1)
                    x_fake_list.append(self.G(x_real, c_trg))

                x_concat = torch.cat(x_fake_list, dim=3)
                ii = 0
                for l in x_fake_list:
                    result_path = os.path.join(result_dir,
                                               '{}-images.jpg'.format(ii + 1))
                    save_image(self.denorm(l.data.cpu()),
                               result_path,
                               nrow=1,
                               padding=0)
                    ii = ii + 1
                print('Saved real and fake images into {}...'.format(
                    result_path))
Пример #26
0
def main(config):
    # For fast training.
    cudnn.benchmark = True

    # Create directories if not exist.
    if not os.path.exists(config.log_dir):
        os.makedirs(config.log_dir)
    if not os.path.exists(config.model_save_dir):
        os.makedirs(config.model_save_dir)
    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)
    if not os.path.exists(config.speaker_path):
        raise Exception(f"speaker list {config.speaker_path} does not exist")

    with open(config.speaker_path) as f:
        speakers = json.load(f)
    print(f"load speakers {speakers}", flush=True)

    # Data loader.
    train_loader = get_loader(
        config.train_data_dir,
        config.batch_size,
        config.min_length,
        'train',
        speakers,
        num_workers=config.num_workers,
    )
    test_loader = TestDataset(config.test_data_dir,
                              config.wav_dir,
                              speakers,
                              src_spk=config.test_src_spk,
                              trg_spk=config.test_trg_spk)

    # Solver for training and testing StarGAN.
    solver = Solver(train_loader, test_loader, config)

    if config.mode == 'train':
        solver.train()
Пример #27
0
def main(config):
    prepare_dirs_and_logger(config)

    torch.manual_seed(config.random_seed)
    if config.num_gpu > 0:
        torch.cuda.manual_seed(config.random_seed)

    if config.is_train:
        data_path = config.data_path
        batch_size = config.batch_size
    else:
        if config.test_data_path is None:
            data_path = config.data_path
        else:
            data_path = config.test_data_path
        batch_size = config.sample_per_image

    if config.dataset == 'celebA':
        a_data_loader, b_data_loader = get_celebA_loader(
            data_path, batch_size, config.input_scale_size, config.style_A,
            config.style_B, config.constraint, config.constraint_type,
            config.num_worker, config.skip_pix2pix_processing)
    else:
        a_data_loader, b_data_loader = get_loader(
            data_path, batch_size, config.input_scale_size, config.num_worker,
            config.skip_pix2pix_processing)

    trainer = Trainer(config, a_data_loader, b_data_loader)

    if config.is_train:
        save_config(config)
        trainer.train()
    else:
        if not config.load_path:
            raise Exception(
                "[!] You should specify `load_path` to load a pretrained model"
            )
        trainer.test()
Пример #28
0
def main():
    args = configs()
    if args.training_instance:
        args.load_path = os.path.join(args.load_path, args.training_instance)
        args.summary_path = os.path.join(args.summary_path,
                                         args.training_instance)
    else:
        args.load_path = os.path.join(
            args.load_path,
            "evflownet_{}".format(datetime.now().strftime("%m%d_%H%M%S")))
        args.summary_path = os.path.join(
            args.summary_path,
            "evflownet_{}".format(datetime.now().strftime("%m%d_%H%M%S")))
    if not os.path.exists(args.load_path):
        os.makedirs(args.load_path)
    if not os.path.exists(args.summary_path):
        os.makedirs(args.summary_path)

    # Fix the random seed for reproducibility.
    # Remove this if you are using this code for something else!
    tf.set_random_seed(12345)

    event_img_loader, prev_img_loader, next_img_loader, _, n_ima = get_loader(
        args.data_path,
        args.batch_size,
        args.image_width,
        args.image_height,
        split='train',
        shuffle=True)
    print("Number of images: {}".format(n_ima))

    trainer = EVFlowNet(args,
                        event_img_loader,
                        prev_img_loader,
                        next_img_loader,
                        n_ima,
                        is_training=True)
    trainer.train()
Пример #29
0
def evaluate(model, elogger, files, save_result = False):
    model.eval()
    if save_result:
        fs = open('%s' % args.result_file, 'w')

    for input_file in files:
        running_loss = 0.0
        data_iter = data_loader.get_loader(input_file, args.batch_size)

        for idx, (attr, traj) in enumerate(data_iter):
            attr, traj = utils.to_var(attr), utils.to_var(traj)

            pred_dict, loss = model.eval_on_batch(attr, traj, config)

            if save_result: write_result(fs, pred_dict, attr)

            running_loss += loss.data.item()

        print('Evaluate on file {}, loss {}'.format(input_file, running_loss / (idx + 1.0)))
        elogger.log('Evaluate File {}, Loss {}'.format(input_file, running_loss / (idx + 1.0)))

    if save_result:
        fs.close()
Пример #30
0
def main(config):
    # For fast training.
    cudnn.benchmark = True

    # Data loader.
    train_loader_casia = get_loader(config.train_data_dir_casia, 
                                    config.target_speaker, 
                                    config.source_emotion, 
                                    config.target_emotion, 
                                    config.batch_size, 
                                    'train', 
                                    num_workers=config.num_workers)
    test_loader = TestDataset(config.test_data_dir, 
                              config.src_wav_dir, 
                              config.target_speaker, 
                              config.source_emotion, 
                              config.target_emotion)

    # Solver for training and testing StarGAN.
    solver = Solver(train_loader_casia, test_loader, config, log)

    if config.mode == 'train':    
        solver.train()
def main(config):
	if config.gpu > -1:
		os.environ["CUDA_VISIBLE_DEVICES"] = str(config.gpu)

	generator_one = GeneratorCNN_Pose_UAEAfterResidual_256(21, config.z_num, config.repeat_num, config.hidden_num)
	generator_two = UAE_noFC_AfterNoise(6, config.repeat_num - 2, config.hidden_num)
	discriminator = DCGANDiscriminator_256(use_gpu=config.use_gpu)

	if config.use_gpu:
		generator_one.cuda()
		generator_two.cuda()
		discriminator.cuda()

	L1_criterion = nn.L1Loss()
	BCE_criterion = nn.BCELoss()

	gen_train_op1 = optim.Adam(generator_one.parameters(), lr=config.g_lr, betas=(config.beta1, config.beta2))
	gen_train_op2 = optim.Adam(generator_two.parameters(), lr=config.g_lr, betas=(config.beta1, config.beta2))
	dis_train_op1 = optim.Adam(discriminator.parameters(), lr=config.d_lr, betas=(config.beta1, config.beta2))

	pose_loader = data_loader.get_loader(os.path.join(config.data_dir, 'DF_img_pose'), config.batch_size) 
	train(generator_one, generator_two, discriminator, L1_criterion, BCE_criterion, gen_train_op1, gen_train_op2, dis_train_op1, 
		pose_loader, config)
Пример #32
0
def main(config):
    # For fast training.
    cudnn.benchmark = True

    # Create directories if not exist.
    if not os.path.exists(config.log_dir):
        os.makedirs(config.log_dir)
    if not os.path.exists(config.model_save_dir):
        os.makedirs(config.model_save_dir)
    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)
    if not os.path.exists(config.result_dir):
        os.makedirs(config.result_dir)

    # Data loader.
    data_loader = get_loader(config.image_dir, config.crop_size,
                             config.image_size, config.batch_size, 'test',
                             config.num_workers)

    # Solver for training and testing StarGAN.
    solver = Solver(data_loader, config)

    solver.test()
Пример #33
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)
    
    # Image preprocessing
    # For normalization, see https://github.com/pytorch/vision#models
    transform = transforms.Compose([ 
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(), 
        transforms.ToTensor(), 
        transforms.Normalize((0.485, 0.456, 0.406), 
                             (0.229, 0.224, 0.225))])
    
    # Load vocabulary wrapper.
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)
    
    # Build data loader
    data_loader = get_loader(args.image_dir, args.caption_path, vocab, 
                             transform, args.batch_size,
                             shuffle=True, num_workers=args.num_workers) 

    # Build the models
    encoder = EncoderCNN(args.embed_size)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, 
                         len(vocab), args.num_layers)
    
    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)
    
    # Train the Models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):
            
            # Set mini-batch dataset
            images = to_var(images, volatile=True)
            captions = to_var(captions)
            targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
            
            # Forward, Backward and Optimize
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                      %(epoch, args.num_epochs, i, total_step, 
                        loss.data[0], np.exp(loss.data[0]))) 
                
            # Save the models
            if (i+1) % args.save_step == 0:
                torch.save(decoder.state_dict(), 
                           os.path.join(args.model_path, 
                                        'decoder-%d-%d.pkl' %(epoch+1, i+1)))
                torch.save(encoder.state_dict(), 
                           os.path.join(args.model_path, 
                                        'encoder-%d-%d.pkl' %(epoch+1, i+1)))
Пример #34
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)
    
    # Image preprocessing, normalization for the pretrained resnet
    transform = transforms.Compose([ 
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(), 
        transforms.ToTensor(), 
        transforms.Normalize((0.485, 0.456, 0.406), 
                             (0.229, 0.224, 0.225))])
    
    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)
    
    # Build data loader
    data_loader = get_loader(args.image_dir, args.caption_path, vocab, 
                             transform, args.batch_size,
                             shuffle=True, num_workers=args.num_workers) 

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers).to(device)
    
    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)
    
    # Train the models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):
            
            # Set mini-batch dataset
            images = images.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
            
            # Forward, backward and optimize
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                      .format(epoch, args.num_epochs, i, total_step, loss.item(), np.exp(loss.item()))) 
                
            # Save the model checkpoints
            if (i+1) % args.save_step == 0:
                torch.save(decoder.state_dict(), os.path.join(
                    args.model_path, 'decoder-{}-{}.ckpt'.format(epoch+1, i+1)))
                torch.save(encoder.state_dict(), os.path.join(
                    args.model_path, 'encoder-{}-{}.ckpt'.format(epoch+1, i+1)))
Пример #35
0
# (Optional) TODO #2: Amend the image transform below.
transform_train = transforms.Compose([ 
    transforms.Resize(256),                          # smaller edge of image resized to 256
    transforms.RandomRotation(5.0),                  # Rotate the image randomly
    transforms.RandomCrop(224),                      # get 224x224 crop from random location
    transforms.RandomHorizontalFlip(),               # horizontally flip image with probability=0.5
    transforms.ColorJitter(0.05, 0.05, 0.05),        # Jitter the color a little
    transforms.ToTensor(),                           # convert the PIL Image to a tensor
    transforms.Normalize((0.485, 0.456, 0.406),      # normalize image for pre-trained model
                         (0.229, 0.224, 0.225))])

# Build data loader.
data_loader = get_loader(transform=transform_train,
                         mode='train',
                         batch_size=batch_size,
                         vocab_threshold=vocab_threshold,
                         vocab_from_file=vocab_from_file,
                         cocoapi_loc=COCOPATH)

# The size of the vocabulary.
vocab_size = len(data_loader.dataset.vocab)

# Initialize the encoder and decoder. 
encoder = EncoderCNN(embed_size)
decoder = DecoderRNN(embed_size, hidden_size, vocab_size)

# Move models to GPU if CUDA is available. 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
encoder.to(device)
decoder.to(device)