def combine_mul_row_treat(data_part2): logger.info('Combine Treatment with multiple rows!') new_treat = pd.DataFrame({}) logger.info('Start processing categorical features!') logger.debug('FractionNumber') new_treat['FractionNumber'] = data_part2.groupby(['PatientSerNum', 'date']).FractionNumber.apply(set) new_treat['FractionNumber'] = new_treat['FractionNumber'].apply(lambda x: get_list(x)) logger.debug('UserName') new_treat['UserName'] = data_part2.groupby(['PatientSerNum', 'date']).UserName.apply(set) new_treat['UserName'] = new_treat['UserName'].apply(lambda x: get_list(x)) logger.debug('RadiationSerNum') new_treat['RadiationSerNum'] = data_part2.groupby(['PatientSerNum', 'date']).RadiationSerNum.apply(set) new_treat['RadiationSerNum'] = new_treat['RadiationSerNum'].apply(lambda x: get_list(x)) # print('Start RadiationId') # new_treat['RadiationId'] = data_part2.groupby(['PatientSerNum', 'date']).RadiationId.apply(set) # new_treat['RadiationId'] = new_treat['RadiationId'].apply(lambda x: get_list(x)) logger.debug('ResourceSerNum') new_treat['ResourceSerNum'] = data_part2.groupby(['PatientSerNum', 'date']).ResourceSerNum.apply(set) new_treat['ResourceSerNum'] = new_treat['ResourceSerNum'].apply(lambda x: get_list(x)) logger.debug('CourseId') new_treat['CourseId'] = data_part2.groupby(['PatientSerNum', 'date']).CourseId.apply(set) new_treat['CourseId'] = new_treat['CourseId'].apply(lambda x: get_list(x)) logger.debug('PatientSerNum') new_treat['PatientSerNum'] = new_treat.index.get_level_values(level=0).tolist() logger.debug('date') new_treat['date'] = new_treat.index.get_level_values(level=1).tolist() logger.info('Start processing numerical features!') logger.debug('ImagesTaken_total') new_treat['ImagesTaken_total'] = data_part2.groupby(['PatientSerNum', 'date']).ImagesTaken.sum() logger.debug('MU_total') new_treat['MU_total'] = data_part2.groupby(['PatientSerNum', 'date']).MU.sum() logger.debug('MUCoeff_total') new_treat['MUCoeff_total'] = data_part2.groupby(['PatientSerNum', 'date']).MUCoeff.sum() logger.debug('TreatmentTime_total') new_treat['TreatmentTime_total'] = data_part2.groupby(['PatientSerNum', 'date']).TreatmentTime.sum() new_treat = new_treat.reset_index(drop=True) return new_treat
import torchvision.models as models import torch.nn as nn from torch.autograd import Variable import matplotlib.pyplot as plt import random from PIL import Image test_set_path = 'LFW_annotation_test.txt' max_epochs = 70 learning_rate = 0.0001 pretrained = True str_pre = 'pre' file_name = 'lfw_resnet_' + str(learning_rate) + '_' + str( max_epochs) + '_' + str_pre test_list = dp.get_list(test_set_path) test_dataset = dp.LFWDataSet(test_list) test_data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=0) print('test items: ', len(test_dataset)) # use ResNet18 net = resnet.resnet18(pretrained=True, num_classes=14) net.cuda() test_net_state = torch.load(os.path.join('.', file_name + '.pth')) net.load_state_dict(test_net_state) net.eval()
def combine_mul_row_appt(data_part1): logger.info('Combine Appointment with multiple rows!') new_appt = pd.DataFrame({}) logger.info('Start processing categorical features!') logger.debug('PatientSerNum') new_appt['PatientSerNum'] = data_part1.groupby('AppointmentSerNum').PatientSerNum.apply(set) new_appt['PatientSerNum'] = new_appt['PatientSerNum'].apply(lambda x: get_list(x)) logger.debug('Sex') new_appt['Sex'] = data_part1.groupby('AppointmentSerNum').Sex.apply(set) new_appt['Sex'] = new_appt['Sex'].apply(lambda x: get_list(x)) logger.debug('DoctorSerNum') new_appt['DoctorSerNum'] = data_part1.groupby('AppointmentSerNum').DoctorSerNum.apply(set) new_appt['DoctorSerNum'] = new_appt['DoctorSerNum'].apply(lambda x: get_list(x)) logger.debug('date') new_appt['date'] = data_part1.groupby('AppointmentSerNum').date.apply(set) new_appt['date'] = new_appt['date'].apply(lambda x: get_list(x)) logger.debug('ScheduledStartTime') new_appt['ScheduledStartTime'] = data_part1.groupby('AppointmentSerNum').ScheduledStartTime.apply(set) new_appt['ScheduledStartTime'] = new_appt['ScheduledStartTime'].apply(lambda x: get_list(x)) logger.debug('ScheduledEndTime') new_appt['ScheduledEndTime'] = data_part1.groupby('AppointmentSerNum').ScheduledEndTime.apply(set) new_appt['ScheduledEndTime'] = new_appt['ScheduledEndTime'].apply(lambda x: get_list(x)) logger.debug('ActualStartDate') new_appt['ActualStartDate'] = data_part1.groupby('AppointmentSerNum').ActualStartDate.apply(set) new_appt['ActualStartDate'] = new_appt['ActualStartDate'].apply(lambda x: get_list(x)) logger.debug('ActualEndDate') new_appt['ActualEndDate'] = data_part1.groupby('AppointmentSerNum').ActualEndDate.apply(set) new_appt['ActualEndDate'] = new_appt['ActualEndDate'].apply(lambda x: get_list(x)) logger.debug('dxt_AliasName') new_appt['dxt_AliasName'] = data_part1.groupby('AppointmentSerNum').dxt_AliasName.apply(set) new_appt['dxt_AliasName'] = new_appt['dxt_AliasName'].apply(lambda x: get_list(x)) logger.debug('AliasSerNum') new_appt['AliasSerNum'] = data_part1.groupby('AppointmentSerNum').AliasSerNum.apply(set) new_appt['AliasSerNum'] = new_appt['AliasSerNum'].apply(lambda x: get_list(x)) logger.debug('CourseSerNum') new_appt['CourseSerNum'] = data_part1.groupby('AppointmentSerNum').CourseSerNum.apply(set) new_appt['CourseSerNum'] = new_appt['CourseSerNum'].apply(lambda x: get_list(x)) logger.debug('PlanSerNum') new_appt['PlanSerNum'] = data_part1.groupby('AppointmentSerNum').PlanSerNum.apply(set) new_appt['PlanSerNum'] = new_appt['PlanSerNum'].apply(lambda x: get_list(x)) logger.debug('TreatmentOrientation') new_appt['TreatmentOrientation'] = data_part1.groupby('AppointmentSerNum').TreatmentOrientation.apply(set) new_appt['TreatmentOrientation'] = new_appt['TreatmentOrientation'].apply(lambda x: get_list(x)) logger.debug('month') new_appt['month'] = data_part1.groupby('AppointmentSerNum').month.apply(set) new_appt['month'] = new_appt['month'].apply(lambda x: get_list(x)) logger.debug('week') new_appt['week'] = data_part1.groupby('AppointmentSerNum').week.apply(set) new_appt['week'] = new_appt['week'].apply(lambda x: get_list(x)) logger.debug('hour') new_appt['hour'] = data_part1.groupby('AppointmentSerNum').hour.apply(set) new_appt['hour'] = new_appt['hour'].apply(lambda x: get_list(x)) logger.debug('AppointmentSerNum') new_appt['AppointmentSerNum'] = new_appt.index.tolist() logger.info('Start processing numerical features!') logger.debug('age') new_appt['age'] = data_part1.groupby('AppointmentSerNum').age.mean() logger.debug('Scheduled_duration') new_appt['Scheduled_duration'] = data_part1.groupby('AppointmentSerNum').Scheduled_duration.mean() logger.debug('Actual_duration') new_appt['Actual_duration'] = data_part1.groupby('AppointmentSerNum').Actual_duration.mean() new_appt = new_appt.reset_index(drop=True) return new_appt
import torchvision.models as models import torch.nn as nn from torch.autograd import Variable import matplotlib.pyplot as plt torch.set_default_tensor_type('torch.cuda.FloatTensor') train_set_path = 'LFW_annotation_train.txt' max_epochs = 180 learning_rate = 0.0001 pretrained = True str_pre = 'pre' file_name = 'lfw_alexnet_' + str(learning_rate) + '_' + str( max_epochs) + '_' + str_pre train_list = dp.get_list(train_set_path) valid_list = train_list[-2000:] train_list = train_list[:-2000] transform = ['flip', 'rcrop'] train_dataset = dp.LFWDataSet(train_list, transform=transform) train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=False, num_workers=0) print('training items:', len(train_dataset)) valid_dataset = dp.LFWDataSet(valid_list, transform=transform) valid_data_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=64, shuffle=True,