Пример #1
0
def mnist_train(epoch_size, batch_size, lr, momentum):
    mnist_path = "./MNIST_unzip/"
    ds = generate_mnist_dataset(os.path.join(mnist_path, "train"),
                                batch_size=batch_size,
                                repeat_size=1)

    network = LeNet5()
    net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False,
                                                sparse=True,
                                                reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), lr, momentum)
    config_ck = CheckpointConfig(save_checkpoint_steps=1875,
                                 keep_checkpoint_max=10)
    ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
                                 directory="./trained_ckpt_file/",
                                 config=config_ck)
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})

    LOGGER.info(TAG, "============== Starting Training ==============")
    model.train(epoch_size,
                ds,
                callbacks=[ckpoint_cb, LossMonitor()],
                dataset_sink_mode=False)

    LOGGER.info(TAG, "============== Starting Testing ==============")
    ckpt_file_name = "trained_ckpt_file/checkpoint_lenet-10_1875.ckpt"
    param_dict = load_checkpoint(ckpt_file_name)
    load_param_into_net(network, param_dict)
    ds_eval = generate_mnist_dataset(os.path.join(mnist_path, "test"),
                                     batch_size=batch_size)
    acc = model.eval(ds_eval, dataset_sink_mode=False)
    LOGGER.info(TAG, "============== Accuracy: %s ==============", acc)
Пример #2
0
def test_lenet_mnist_fuzzing():
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)
    model = Model(net)

    # get training data
    data_list = "./MNIST_unzip/train"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
    train_images = []
    for data in ds.create_tuple_iterator():
        images = data[0].astype(np.float32)
        train_images.append(images)
    train_images = np.concatenate(train_images, axis=0)

    # initialize fuzz test with training dataset
    model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images)

    # fuzz test with original test data
    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
    test_images = []
    test_labels = []
    for data in ds.create_tuple_iterator():
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
    test_images = np.concatenate(test_images, axis=0)
    test_labels = np.concatenate(test_labels, axis=0)
    initial_seeds = []

    # make initial seeds
    for img, label in zip(test_images, test_labels):
        initial_seeds.append([img, label])

    initial_seeds = initial_seeds[:100]
    model_coverage_test.test_adequacy_coverage_calculate(
        np.array(test_images[:100]).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())

    model_fuzz_test = Fuzzing(initial_seeds, model, train_images, 20)
    failed_tests = model_fuzz_test.fuzzing()
    if failed_tests:
        model_coverage_test.test_adequacy_coverage_calculate(
            np.array(failed_tests).astype(np.float32))
        LOGGER.info(TAG, 'KMNC of this test is : %s',
                    model_coverage_test.get_kmnc())
    else:
        LOGGER.info(TAG, 'Fuzzing test identifies none failed test')
Пример #3
0
def test_lenet_mnist_coverage():
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)
    model = Model(net)

    # get training data
    data_list = "./MNIST_unzip/train"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
    train_images = []
    for data in ds.create_tuple_iterator():
        images = data[0].astype(np.float32)
        train_images.append(images)
    train_images = np.concatenate(train_images, axis=0)

    # initialize fuzz test with training dataset
    model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images)

    # fuzz test with original test data
    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
    test_images = []
    test_labels = []
    for data in ds.create_tuple_iterator():
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
    test_images = np.concatenate(test_images, axis=0)
    test_labels = np.concatenate(test_labels, axis=0)
    model_fuzz_test.test_adequacy_coverage_calculate(test_images)
    LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc())
    LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc())
    LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac())

    # generate adv_data
    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss)
    adv_data = attack.batch_generate(test_images, test_labels, batch_size=32)
    model_fuzz_test.test_adequacy_coverage_calculate(adv_data,
                                                     bias_coefficient=0.5)
    LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc())
    LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc())
    LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac())
Пример #4
0
def mnist_train(epoch_size, batch_size, lr, momentum):
    context.set_context(mode=context.GRAPH_MODE,
                        device_target="Ascend",
                        enable_mem_reuse=False)

    lr = lr
    momentum = momentum
    epoch_size = epoch_size
    mnist_path = "./MNIST_unzip/"
    ds = generate_mnist_dataset(os.path.join(mnist_path, "train"),
                                batch_size=batch_size,
                                repeat_size=1)

    network = LeNet5()
    network.set_train()
    net_loss = CrossEntropyLoss()
    net_opt = nn.Momentum(network.trainable_params(), lr, momentum)
    config_ck = CheckpointConfig(save_checkpoint_steps=1875,
                                 keep_checkpoint_max=10)
    ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
                                 directory='./trained_ckpt_file/',
                                 config=config_ck)
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})

    LOGGER.info(TAG, "============== Starting Training ==============")
    model.train(epoch_size,
                ds,
                callbacks=[ckpoint_cb, LossMonitor()],
                dataset_sink_mode=False)  # train

    LOGGER.info(TAG, "============== Starting Testing ==============")
    param_dict = load_checkpoint(
        "trained_ckpt_file/checkpoint_lenet-10_1875.ckpt")
    load_param_into_net(network, param_dict)
    ds_eval = generate_mnist_dataset(os.path.join(mnist_path, "test"),
                                     batch_size=batch_size)
    acc = model.eval(ds_eval)
    LOGGER.info(TAG, "============== Accuracy: %s ==============", acc)
Пример #5
0
def test_hsja_mnist_attack():
    """
    hsja-Attack test
    """
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)
    net.set_train(False)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = ModelToBeAttacked(net)
    batch_num = 5  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(images), axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
    test_images = np.concatenate(test_images)

    # attacking
    norm = 'l2'
    search = 'grid_search'
    target = False
    attack = HopSkipJumpAttack(model, constraint=norm, stepsize_search=search)
    if target:
        target_labels = random_target_labels(true_labels)
        target_images = create_target_images(test_images, predict_labels,
                                             target_labels)
        attack.set_target_images(target_images)
        success_list, adv_data, query_list = attack.generate(
            test_images, target_labels)
    else:
        success_list, adv_data, query_list = attack.generate(test_images, None)

    adv_datas = []
    gts = []
    for success, adv, gt in zip(success_list, adv_data, true_labels):
        if success:
            adv_datas.append(adv)
            gts.append(gt)
    if len(gts) > 0:
        adv_datas = np.concatenate(np.asarray(adv_datas), axis=0)
        gts = np.asarray(gts)
        pred_logits_adv = model.predict(adv_datas)
        pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
        accuracy_adv = np.mean(np.equal(pred_lables_adv, gts))
        LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                    accuracy_adv)
def test_pointwise_attack_on_mnist():
    """
    Salt-and-Pepper-Attack test
    """
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = ModelToBeAttacked(net)
    batch_num = 3  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(images), axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)

    # attacking
    is_target = False
    attack = PointWiseAttack(model=model, is_targeted=is_target)
    if is_target:
        targeted_labels = np.random.randint(0, 10, size=len(true_labels))
        for i in range(len(true_labels)):
            if targeted_labels[i] == true_labels[i]:
                targeted_labels[i] = (targeted_labels[i] + 1) % 10
    else:
        targeted_labels = true_labels
    success_list, adv_data, query_list = attack.generate(
        np.concatenate(test_images), targeted_labels)
    success_list = np.arange(success_list.shape[0])[success_list]
    LOGGER.info(TAG, 'success_list: %s', success_list)
    LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
    adv_preds = []
    for ite_data in adv_data:
        pred_logits_adv = model.predict(ite_data)
        # rescale predict confidences into (0, 1).
        pred_logits_adv = softmax(pred_logits_adv, axis=1)
        adv_preds.extend(pred_logits_adv)
    accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
                accuracy_adv)
    test_labels_onehot = np.eye(10)[true_labels]
    attack_evaluate = AttackEvaluate(np.concatenate(test_images),
                                     test_labels_onehot,
                                     adv_data,
                                     adv_preds,
                                     targeted=is_target,
                                     target_label=targeted_labels)
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(
        TAG, 'The average distance (l0, l2, linf) between original '
        'samples and adversarial samples are: %s',
        attack_evaluate.avg_lp_distance())
Пример #7
0
def test_lbfgs_attack():
    """
    LBFGS-Attack test
    """
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size, sparse=False)

    # prediction accuracy before attack
    model = Model(net)
    batch_num = 3  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
                                axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.argmax(np.concatenate(test_labels), axis=1)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)

    # attacking
    is_targeted = True
    if is_targeted:
        targeted_labels = np.random.randint(
            0, 10, size=len(true_labels)).astype(np.int32)
        for i in range(len(true_labels)):
            if targeted_labels[i] == true_labels[i]:
                targeted_labels[i] = (targeted_labels[i] + 1) % 10
    else:
        targeted_labels = true_labels.astype(np.int32)
    targeted_labels = np.eye(10)[targeted_labels].astype(np.float32)
    attack = LBFGS(net, is_targeted=is_targeted)
    start_time = time.clock()
    adv_data = attack.batch_generate(np.concatenate(test_images),
                                     targeted_labels,
                                     batch_size=batch_size)
    stop_time = time.clock()
    pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
    # rescale predict confidences into (0, 1).
    pred_logits_adv = softmax(pred_logits_adv, axis=1)
    pred_labels_adv = np.argmax(pred_logits_adv, axis=1)

    accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
                accuracy_adv)
    attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(
        0, 2, 3, 1),
                                     np.concatenate(test_labels),
                                     adv_data.transpose(0, 2, 3, 1),
                                     pred_logits_adv,
                                     targeted=is_targeted,
                                     target_label=np.argmax(targeted_labels,
                                                            axis=1))
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(
        TAG, 'The average distance (l0, l2, linf) between original '
        'samples and adversarial samples are: %s',
        attack_evaluate.avg_lp_distance())
    LOGGER.info(
        TAG, 'The average structural similarity between original '
        'samples and adversarial samples are: %s', attack_evaluate.avg_ssim())
    LOGGER.info(TAG, 'The average costing time is %s',
                (stop_time - start_time) / (batch_num * batch_size))
Пример #8
0
def test_genetic_attack_on_mnist():
    """
    Genetic-Attack test
    """
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = ModelToBeAttacked(net)
    batch_num = 3  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(images), axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)

    # attacking
    attack = GeneticAttack(model=model,
                           pop_size=6,
                           mutation_rate=0.05,
                           per_bounds=0.1,
                           step_size=0.25,
                           temp=0.1,
                           sparse=True)
    targeted_labels = np.random.randint(0, 10, size=len(true_labels))
    for i, true_l in enumerate(true_labels):
        if targeted_labels[i] == true_l:
            targeted_labels[i] = (targeted_labels[i] + 1) % 10
    start_time = time.clock()
    success_list, adv_data, query_list = attack.generate(
        np.concatenate(test_images), targeted_labels)
    stop_time = time.clock()
    LOGGER.info(TAG, 'success_list: %s', success_list)
    LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
    pred_logits_adv = model.predict(adv_data)
    # rescale predict confidences into (0, 1).
    pred_logits_adv = softmax(pred_logits_adv, axis=1)
    pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
    accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
                accuracy_adv)
    test_labels_onehot = np.eye(10)[true_labels]
    attack_evaluate = AttackEvaluate(np.concatenate(test_images),
                                     test_labels_onehot,
                                     adv_data,
                                     pred_logits_adv,
                                     targeted=True,
                                     target_label=targeted_labels)
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(
        TAG, 'The average distance (l0, l2, linf) between original '
        'samples and adversarial samples are: %s',
        attack_evaluate.avg_lp_distance())
    LOGGER.info(
        TAG, 'The average structural similarity between original '
        'samples and adversarial samples are: %s', attack_evaluate.avg_ssim())
    LOGGER.info(TAG, 'The average costing time is %s',
                (stop_time - start_time) / (batch_num * batch_size))
Пример #9
0
def test_black_defense():
    # load trained network
    current_dir = os.path.dirname(os.path.abspath(__file__))
    ckpt_name = os.path.abspath(
        os.path.join(current_dir,
                     './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'))
    # ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    wb_net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(wb_net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds_test = generate_mnist_dataset(data_list,
                                     batch_size=batch_size,
                                     sparse=False)
    inputs = []
    labels = []
    for data in ds_test.create_tuple_iterator():
        inputs.append(data[0].astype(np.float32))
        labels.append(data[1])
    inputs = np.concatenate(inputs).astype(np.float32)
    labels = np.concatenate(labels).astype(np.float32)
    labels_sparse = np.argmax(labels, axis=1)

    target_label = np.random.randint(0, 10, size=labels_sparse.shape[0])
    for idx in range(labels_sparse.shape[0]):
        while target_label[idx] == labels_sparse[idx]:
            target_label[idx] = np.random.randint(0, 10)
    target_label = np.eye(10)[target_label].astype(np.float32)

    attacked_size = 50
    benign_size = 500

    attacked_sample = inputs[:attacked_size]
    attacked_true_label = labels[:attacked_size]
    benign_sample = inputs[attacked_size:attacked_size + benign_size]

    wb_model = ModelToBeAttacked(wb_net)

    # gen white-box adversarial examples of test data
    wb_attack = FastGradientSignMethod(wb_net, eps=0.3)
    wb_adv_sample = wb_attack.generate(attacked_sample, attacked_true_label)

    wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1)
    accuracy_test = np.mean(
        np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1),
                 np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s",
                accuracy_test)
    accuracy_adv = np.mean(
        np.equal(np.argmax(wb_raw_preds, axis=1),
                 np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s",
                accuracy_adv)

    # improve the robustness of model with white-box adversarial examples
    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
    opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09)

    nad = NaturalAdversarialDefense(wb_net,
                                    loss_fn=loss,
                                    optimizer=opt,
                                    bounds=(0.0, 1.0),
                                    eps=0.3)
    wb_net.set_train(False)
    nad.batch_defense(inputs[:5000], labels[:5000], batch_size=32, epochs=10)

    wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy()
    wb_def_preds = softmax(wb_def_preds, axis=1)
    accuracy_def = np.mean(
        np.equal(np.argmax(wb_def_preds, axis=1),
                 np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def)

    # calculate defense evaluation metrics for defense against white-box attack
    wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds,
                                      np.argmax(attacked_true_label, axis=1))
    LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack')
    LOGGER.info(
        TAG, 'classification accuracy variance (CAV) is : {:.2f}'.format(
            wb_def_evaluate.cav()))
    LOGGER.info(
        TAG, 'classification rectify ratio (CRR) is : {:.2f}'.format(
            wb_def_evaluate.crr()))
    LOGGER.info(
        TAG, 'classification sacrifice ratio (CSR) is : {:.2f}'.format(
            wb_def_evaluate.csr()))
    LOGGER.info(
        TAG, 'classification confidence variance (CCV) is : {:.2f}'.format(
            wb_def_evaluate.ccv()))
    LOGGER.info(
        TAG, 'classification output stability is : {:.2f}'.format(
            wb_def_evaluate.cos()))

    # calculate defense evaluation metrics for defense against black-box attack
    LOGGER.info(TAG, 'defense evaluation for black-box adversarial attack')
    bb_raw_preds = []
    bb_def_preds = []
    raw_query_counts = []
    raw_query_time = []
    def_query_counts = []
    def_query_time = []
    def_detection_counts = []

    # gen black-box adversarial examples of test data
    bb_net = LeNet5()
    load_param_into_net(bb_net, load_dict)
    bb_model = ModelToBeAttacked(bb_net, defense=False)
    attack_rm = GeneticAttack(model=bb_model,
                              pop_size=6,
                              mutation_rate=0.05,
                              per_bounds=0.1,
                              step_size=0.25,
                              temp=0.1,
                              sparse=False)
    attack_target_label = target_label[:attacked_size]
    true_label = labels_sparse[:attacked_size + benign_size]
    # evaluate robustness of original model
    # gen black-box adversarial examples of test data
    for idx in range(attacked_size):
        raw_st = time.time()
        raw_sl, raw_a, raw_qc = attack_rm.generate(
            np.expand_dims(attacked_sample[idx], axis=0),
            np.expand_dims(attack_target_label[idx], axis=0))
        raw_t = time.time() - raw_st
        bb_raw_preds.extend(softmax(bb_model.predict(raw_a), axis=1))
        raw_query_counts.extend(raw_qc)
        raw_query_time.append(raw_t)

    for idx in range(benign_size):
        raw_st = time.time()
        bb_raw_pred = softmax(bb_model.predict(
            np.expand_dims(benign_sample[idx], axis=0)),
                              axis=1)
        raw_t = time.time() - raw_st
        bb_raw_preds.extend(bb_raw_pred)
        raw_query_counts.extend([0])
        raw_query_time.append(raw_t)

    accuracy_test = np.mean(
        np.equal(np.argmax(bb_raw_preds[0:len(attack_target_label)], axis=1),
                 np.argmax(attack_target_label, axis=1)))
    LOGGER.info(TAG, "attack success before adv defense is : %s",
                accuracy_test)

    # improve the robustness of model with similarity-based detector
    bb_def_model = ModelToBeAttacked(bb_net,
                                     defense=True,
                                     train_images=inputs[0:6000])
    # attack defensed model
    attack_dm = GeneticAttack(model=bb_def_model,
                              pop_size=6,
                              mutation_rate=0.05,
                              per_bounds=0.1,
                              step_size=0.25,
                              temp=0.1,
                              sparse=False)
    for idx in range(attacked_size):
        def_st = time.time()
        def_sl, def_a, def_qc = attack_dm.generate(
            np.expand_dims(attacked_sample[idx], axis=0),
            np.expand_dims(attack_target_label[idx], axis=0))
        def_t = time.time() - def_st
        det_res = bb_def_model.get_detected_result()
        def_detection_counts.append(np.sum(det_res[-def_qc[0]:]))
        bb_def_preds.extend(softmax(bb_def_model.predict(def_a), axis=1))
        def_query_counts.extend(def_qc)
        def_query_time.append(def_t)

    for idx in range(benign_size):
        def_st = time.time()
        bb_def_pred = softmax(bb_def_model.predict(
            np.expand_dims(benign_sample[idx], axis=0)),
                              axis=1)
        def_t = time.time() - def_st
        det_res = bb_def_model.get_detected_result()
        def_detection_counts.append(np.sum(det_res[-1]))
        bb_def_preds.extend(bb_def_pred)
        def_query_counts.extend([0])
        def_query_time.append(def_t)

    accuracy_adv = np.mean(
        np.equal(np.argmax(bb_def_preds[0:len(attack_target_label)], axis=1),
                 np.argmax(attack_target_label, axis=1)))
    LOGGER.info(TAG, "attack success rate after adv defense is : %s",
                accuracy_adv)

    bb_raw_preds = np.array(bb_raw_preds).astype(np.float32)
    bb_def_preds = np.array(bb_def_preds).astype(np.float32)
    # check evaluate data
    max_queries = 6000

    def_evaluate = BlackDefenseEvaluate(bb_raw_preds, bb_def_preds,
                                        np.array(raw_query_counts),
                                        np.array(def_query_counts),
                                        np.array(raw_query_time),
                                        np.array(def_query_time),
                                        np.array(def_detection_counts),
                                        true_label, max_queries)

    LOGGER.info(
        TAG, 'query count variance of adversaries is : {:.2f}'.format(
            def_evaluate.qcv()))
    LOGGER.info(
        TAG, 'attack success rate variance of adversaries '
        'is : {:.2f}'.format(def_evaluate.asv()))
    LOGGER.info(
        TAG, 'false positive rate (FPR) of the query-based detector '
        'is : {:.2f}'.format(def_evaluate.fpr()))
    LOGGER.info(
        TAG, 'the benign query response time variance (QRV) '
        'is : {:.2f}'.format(def_evaluate.qrv()))
def test_similarity_detector():
    """
    Similarity Detector test.
    """
    # load trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get mnist data
    data_list = "./MNIST_unzip/test"
    batch_size = 1000
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)
    model = ModelToBeAttacked(net)

    batch_num = 10  # the number of batches of input samples
    all_images = []
    true_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        all_images.append(images)
        true_labels.append(labels)
        pred_labels = np.argmax(model.predict(images), axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    all_images = np.concatenate(all_images)
    true_labels = np.concatenate(true_labels)
    predict_labels = np.concatenate(predict_labels)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)

    train_images = all_images[0:6000, :, :, :]
    attacked_images = all_images[0:10, :, :, :]
    attacked_labels = true_labels[0:10]

    # generate malicious query sequence of black attack
    attack = PSOAttack(model,
                       bounds=(0.0, 1.0),
                       pm=0.5,
                       sparse=True,
                       t_max=1000)
    success_list, adv_data, query_list = attack.generate(
        attacked_images, attacked_labels)
    LOGGER.info(TAG, 'pso attack success_list: %s', success_list)
    LOGGER.info(TAG, 'average of query counts is : %s', np.mean(query_list))
    pred_logits_adv = model.predict(adv_data)
    # rescale predict confidences into (0, 1).
    pred_logits_adv = softmax(pred_logits_adv, axis=1)
    pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
    accuracy_adv = np.mean(np.equal(pred_lables_adv, attacked_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
                accuracy_adv)

    benign_queries = all_images[6000:10000, :, :, :]
    suspicious_queries = model.get_queries()

    # explicit threshold not provided, calculate threshold for K
    encoder = Model(EncoderNet(encode_dim=256))
    detector = SimilarityDetector(max_k_neighbor=50, trans_model=encoder)
    detector.fit(inputs=train_images)

    # test benign queries
    detector.detect(benign_queries)
    fpr = len(detector.get_detected_queries()) / benign_queries.shape[0]
    LOGGER.info(TAG, 'Number of false positive of attack detector is : %s',
                len(detector.get_detected_queries()))
    LOGGER.info(TAG, 'False positive rate of attack detector is : %s', fpr)

    # test attack queries
    detector.clear_buffer()
    detector.detect(suspicious_queries)
    LOGGER.info(TAG, 'Number of detected attack queries is : %s',
                len(detector.get_detected_queries()))
    LOGGER.info(TAG, 'The detected attack query indexes are : %s',
                detector.get_detected_queries())
Пример #11
0
def test_nes_mnist_attack():
    """
    hsja-Attack test
    """
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)
    net.set_train(False)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = ModelToBeAttacked(net)
    # the number of batches of attacking samples
    batch_num = 5
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(images), axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)

    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
    test_images = np.concatenate(test_images)

    # attacking
    scene = 'Query_Limit'
    if scene == 'Query_Limit':
        top_k = -1
    elif scene == 'Partial_Info':
        top_k = 5
    elif scene == 'Label_Only':
        top_k = 5

    success = 0
    queries_num = 0

    nes_instance = NES(model, scene, top_k=top_k)
    test_length = 32
    advs = []
    for img_index in range(test_length):
        # Initial image and class selection
        initial_img = test_images[img_index]
        orig_class = true_labels[img_index]
        initial_img = [initial_img]
        target_class = random_target_labels([orig_class], true_labels)
        target_image = create_target_images(test_images, true_labels,
                                            target_class)
        nes_instance.set_target_images(target_image)
        tag, adv, queries = nes_instance.generate(initial_img, target_class)
        if tag[0]:
            success += 1
        queries_num += queries[0]
        advs.append(adv)

    advs = np.reshape(advs, (len(advs), 1, 32, 32))
    adv_pred = np.argmax(model.predict(advs), axis=1)
    adv_accuracy = np.mean(np.equal(adv_pred, true_labels[:test_length]))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
                adv_accuracy)
Пример #12
0
def test_momentum_diverse_input_iterative_method():
    """
    M-DI2-FGSM Attack Test for CPU device.
    """
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size)

    # prediction accuracy before attack
    model = Model(net)
    batch_num = 32  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
                                axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)

    # attacking
    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    attack = MomentumDiverseInputIterativeMethod(net, loss_fn=loss)
    start_time = time.clock()
    adv_data = attack.batch_generate(np.concatenate(test_images),
                                     true_labels,
                                     batch_size=32)
    stop_time = time.clock()
    pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
    # rescale predict confidences into (0, 1).
    pred_logits_adv = softmax(pred_logits_adv, axis=1)
    pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
    accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
                accuracy_adv)
    attack_evaluate = AttackEvaluate(
        np.concatenate(test_images).transpose(0, 2, 3, 1),
        np.eye(10)[true_labels], adv_data.transpose(0, 2, 3, 1),
        pred_logits_adv)
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(
        TAG, 'The average distance (l0, l2, linf) between original '
        'samples and adversarial samples are: %s',
        attack_evaluate.avg_lp_distance())
    LOGGER.info(
        TAG, 'The average structural similarity between original '
        'samples and adversarial samples are: %s', attack_evaluate.avg_ssim())
    LOGGER.info(TAG, 'The average costing time is %s',
                (stop_time - start_time) / (batch_num * batch_size))
Пример #13
0
def test_nad_method():
    """
    NAD-Defense test.
    """
    # 1. load trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
    opt = nn.Momentum(net.trainable_params(), 0.01, 0.09)

    nad = NaturalAdversarialDefense(net,
                                    loss_fn=loss,
                                    optimizer=opt,
                                    bounds=(0.0, 1.0),
                                    eps=0.3)

    # 2. get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds_test = generate_mnist_dataset(data_list,
                                     batch_size=batch_size,
                                     sparse=False)
    inputs = []
    labels = []
    for data in ds_test.create_tuple_iterator():
        inputs.append(data[0].astype(np.float32))
        labels.append(data[1])
    inputs = np.concatenate(inputs)
    labels = np.concatenate(labels)

    # 3. get accuracy of test data on original model
    net.set_train(False)
    acc_list = []
    batchs = inputs.shape[0] // batch_size
    for i in range(batchs):
        batch_inputs = inputs[i * batch_size:(i + 1) * batch_size]
        batch_labels = np.argmax(labels[i * batch_size:(i + 1) * batch_size],
                                 axis=1)
        logits = net(Tensor(batch_inputs)).asnumpy()
        label_pred = np.argmax(logits, axis=1)
        acc_list.append(np.mean(batch_labels == label_pred))

    LOGGER.debug(TAG, 'accuracy of TEST data on original model is : %s',
                 np.mean(acc_list))

    # 4. get adv of test data
    attack = FastGradientSignMethod(net, eps=0.3)
    adv_data = attack.batch_generate(inputs, labels)
    LOGGER.debug(TAG, 'adv_data.shape is : %s', adv_data.shape)

    # 5. get accuracy of adv data on original model
    net.set_train(False)
    acc_list = []
    batchs = adv_data.shape[0] // batch_size
    for i in range(batchs):
        batch_inputs = adv_data[i * batch_size:(i + 1) * batch_size]
        batch_labels = np.argmax(labels[i * batch_size:(i + 1) * batch_size],
                                 axis=1)
        logits = net(Tensor(batch_inputs)).asnumpy()
        label_pred = np.argmax(logits, axis=1)
        acc_list.append(np.mean(batch_labels == label_pred))

    LOGGER.debug(TAG, 'accuracy of adv data on original model is : %s',
                 np.mean(acc_list))

    # 6. defense
    net.set_train()
    nad.batch_defense(inputs, labels, batch_size=32, epochs=10)

    # 7. get accuracy of test data on defensed model
    net.set_train(False)
    acc_list = []
    batchs = inputs.shape[0] // batch_size
    for i in range(batchs):
        batch_inputs = inputs[i * batch_size:(i + 1) * batch_size]
        batch_labels = np.argmax(labels[i * batch_size:(i + 1) * batch_size],
                                 axis=1)
        logits = net(Tensor(batch_inputs)).asnumpy()
        label_pred = np.argmax(logits, axis=1)
        acc_list.append(np.mean(batch_labels == label_pred))

    LOGGER.debug(TAG, 'accuracy of TEST data on defensed model is : %s',
                 np.mean(acc_list))

    # 8. get accuracy of adv data on defensed model
    acc_list = []
    batchs = adv_data.shape[0] // batch_size
    for i in range(batchs):
        batch_inputs = adv_data[i * batch_size:(i + 1) * batch_size]
        batch_labels = np.argmax(labels[i * batch_size:(i + 1) * batch_size],
                                 axis=1)
        logits = net(Tensor(batch_inputs)).asnumpy()
        label_pred = np.argmax(logits, axis=1)
        acc_list.append(np.mean(batch_labels == label_pred))

    LOGGER.debug(TAG, 'accuracy of adv data on defensed model is : %s',
                 np.mean(acc_list))