Пример #1
0
def prepare_job():

    # Create 10 job directories
    for i in range(JOBS):
        os.makedirs(LOCAL_ROOT_DIR + "/processor_job_" + str(i), exist_ok=True)

        # These live on prod volumes at locations such as:
        # /var/ebs/SRP057116/SRR1972985/SRR1972985.sra
        os.makedirs(LOCAL_ROOT_DIR + "/SRP" + str(i), exist_ok=True)
        os.makedirs(LOCAL_ROOT_DIR + "/SRP" + str(i) + "/SRR" + str(i),
                    exist_ok=True)

        sample = Sample()
        sample.accession_code = "SRR" + str(i)
        sample.save()

        cr = ComputationalResult()
        cr.save()

        cf = ComputedFile()
        cf.result = cr
        cf.size_in_bytes = 666
        cf.save()

        scfa = SampleComputedFileAssociation()
        scfa.sample = sample
        scfa.computed_file = cf
        scfa.save()

    # Create a job out of the range with index in it to make sure we
    # don't delete index directories since that's where transcriptome
    # indices get downloaded to.
    os.makedirs(LOCAL_ROOT_DIR + "/processor_job_" + str(JOBS + 1) + "_index",
                exist_ok=True)

    os.makedirs(LOCAL_ROOT_DIR + "/SRP" + str(JOBS + 1) + "/SRR" +
                str(JOBS + 1),
                exist_ok=True)
    sample = Sample()
    sample.accession_code = "SRR" + str(JOBS + 1)
    sample.save()

    # Save two jobs so that we trigger two special circumstances, one
    # where the job is still running and the other where the job isn't
    # in Batch anymore.
    pj = ProcessorJob()
    pj.pipeline_applied = "SALMON"
    pj.batch_job_id = "running_job"
    pj.save()

    pj = ProcessorJob()
    pj.pipeline_applied = "SALMON"
    pj.batch_job_id = "missing_job"
    pj.save()

    pj = ProcessorJob()
    pj.pipeline_applied = "JANITOR"
    pj.save()

    return pj
Пример #2
0
    def test_qn_management_command(self):
        """Test that the management command fires off and then does not create
        a job for an organism that does not have enough samples on the same
        platform."""

        homo_sapiens = Organism(name="HOMO_SAPIENS", taxonomy_id=9606)
        homo_sapiens.save()

        experiment = Experiment()
        experiment.accession_code = "12345"
        experiment.save()
        codes = ["1", "2", "3", "4", "5", "6"]
        # We don't have a 0.tsv

        for code in codes:
            sample = Sample()
            sample.accession_code = code
            sample.title = code
            sample.platform_accession_code = "A-MEXP-1171"
            sample.manufacturer = "SLIPPERY DICK'S DISCOUNT MICROARRAYS"
            sample.organism = homo_sapiens
            sample.technology = "MICROARRAY"
            sample.is_processed = True
            sample.save()

            cr = ComputationalResult()
            cr.save()

            computed_file = ComputedFile()
            computed_file.filename = code + ".tsv"
            computed_file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv"
            computed_file.size_in_bytes = int(code)
            computed_file.result = cr
            computed_file.is_smashable = True
            computed_file.save()

            scfa = SampleComputedFileAssociation()
            scfa.sample = sample
            scfa.computed_file = computed_file
            scfa.save()

            exsa = ExperimentSampleAssociation()
            exsa.experiment = experiment
            exsa.sample = sample
            exsa.save()

        out = StringIO()
        try:
            call_command("create_qn_target", organism="homo_sapiens", min=1, stdout=out)
        except SystemExit as e:  # this is okay!
            pass

        stdout = out.getvalue()
        self.assertFalse("Target file" in stdout)

        # There's not enough samples available in this scenario so we
        # shouldn't have even made a processor job.
        self.assertEqual(ProcessorJob.objects.count(), 0)
Пример #3
0
def make_test_data(organism):
    experiment = Experiment()
    experiment.accession_code = "GSE51088"
    experiment.technology = "RNA-SEQ"
    experiment.save()

    xoa = ExperimentOrganismAssociation()
    xoa.experiment = experiment
    xoa.organism = organism
    xoa.save()

    result = ComputationalResult()
    result.save()

    sample = Sample()
    sample.accession_code = "GSM1237818"
    sample.title = "GSM1237818"
    sample.organism = organism
    sample.technology = "RNA-SEQ"
    sample.is_processed = True
    sample.save()

    sra = SampleResultAssociation()
    sra.sample = sample
    sra.result = result
    sra.save()

    esa = ExperimentSampleAssociation()
    esa.experiment = experiment
    esa.sample = sample
    esa.save()

    computed_file = ComputedFile()
    computed_file.s3_key = "smasher-test-quant.sf"
    computed_file.s3_bucket = "data-refinery-test-assets"
    computed_file.filename = "quant.sf"
    computed_file.absolute_file_path = "/home/user/data_store/QUANT/smasher-test-quant.sf"
    computed_file.result = result
    computed_file.is_smashable = True
    computed_file.size_in_bytes = 123123
    computed_file.sha1 = (
        "08c7ea90b66b52f7cd9d9a569717a1f5f3874967"  # this matches with the downloaded file
    )
    computed_file.save()

    computed_file = ComputedFile()
    computed_file.filename = "logquant.tsv"
    computed_file.is_smashable = True
    computed_file.size_in_bytes = 123123
    computed_file.result = result
    computed_file.save()

    assoc = SampleComputedFileAssociation()
    assoc.sample = sample
    assoc.computed_file = computed_file
    assoc.save()
Пример #4
0
    def test_qn_reference(self, mock_send_job):
        organism = Organism(name="HOMO_SAPIENS", taxonomy_id=9606)
        organism.save()

        experiment = Experiment()
        experiment.accession_code = "12345"
        experiment.save()

        for code in [str(i) for i in range(1, 401)]:
            sample = Sample()
            sample.accession_code = code
            sample.title = code
            sample.platform_name = f"Affymetrix {organism.name}"
            sample.platform_accession_code = f"A-MEXP-{organism.name}"
            sample.manufacturer = "AFFYMETRIX"
            sample.organism = organism
            sample.technology = "MICROARRAY"
            sample.is_processed = True
            sample.has_raw = True
            sample.save()

            cr = ComputationalResult()
            cr.save()

            computed_file = ComputedFile()
            computed_file.filename = code + ".tsv"
            computed_file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv"
            computed_file.size_in_bytes = int(code)
            computed_file.result = cr
            computed_file.is_smashable = True
            computed_file.save()

            scfa = SampleComputedFileAssociation()
            scfa.sample = sample
            scfa.computed_file = computed_file
            scfa.save()

            exsa = ExperimentSampleAssociation()
            exsa.experiment = experiment
            exsa.sample = sample
            exsa.save()

            # We need more than one organism for the tests, but can't
            # repeat accesion codes, so halfway through just change the organism.
            if int(code) == 200:
                organism = Organism(name="MUS_MUSCULUS", taxonomy_id=111)
                organism.save()

        # Setup is done, actually run the command.
        command = Command()
        command.handle(organisms="HOMO_SAPIENS,MUS_MUSCULUS")

        self.assertEqual(len(mock_send_job.mock_calls), 2)
        self.assertEqual(ProcessorJob.objects.count(), 2)
Пример #5
0
    def test_fail(self):
        """ Test our ability to fail """

        result = ComputationalResult()
        result.save()

        sample = Sample()
        sample.accession_code = 'XXX'
        sample.title = 'XXX'
        sample.organism = Organism.get_object_for_name("HOMO_SAPIENS")
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        computed_file = ComputedFile()
        computed_file.filename = "NOT_REAL.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        ds = Dataset()
        ds.data = {'GSE51081': ['XXX']}
        ds.aggregate_by = 'EXPERIMENT'
        ds.scale_by = 'MINMAX'
        ds.email_address = "*****@*****.**"
        ds.quantile_normalize = False
        ds.save()
        dsid = ds.id

        job = ProcessorJob()
        job.pipeline_applied = "SMASHER"
        job.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = ds
        pjda.save()

        final_context = smasher.smash(job.pk, upload=False)
        ds = Dataset.objects.get(id=dsid)
        print(ds.failure_reason)
        print(final_context['dataset'].failure_reason)
        self.assertNotEqual(final_context['unsmashable_files'], [])
Пример #6
0
    def test_cleandb(self):
        sample = Sample()
        sample.save()

        result = ComputationalResult()
        result.save()

        good_file = ComputedFile()
        good_file.s3_bucket = "my_cool_bucket"
        good_file.s3_key = "my_sweet_key"
        good_file.size_in_bytes = 1337
        good_file.result = result
        good_file.is_public = True
        good_file.is_smashable = True
        good_file.save()

        sca = SampleComputedFileAssociation()
        sca.sample = sample
        sca.computed_file = good_file
        sca.save()

        bad_file = ComputedFile()
        bad_file.s3_bucket = None
        bad_file.s3_key = None
        bad_file.result = result
        bad_file.size_in_bytes = 7331
        bad_file.is_public = True
        bad_file.is_smashable = True
        bad_file.save()

        sca = SampleComputedFileAssociation()
        sca.sample = sample
        sca.computed_file = bad_file
        sca.save()

        self.assertEqual(sample.computed_files.count(), 2)
        self.assertEqual(sample.get_most_recent_smashable_result_file().id,
                         bad_file.id)
        job_control.clean_database()
        self.assertEqual(sample.get_most_recent_smashable_result_file().id,
                         good_file.id)
Пример #7
0
def prepare_experiment(ids: List[int]) -> Experiment:
    (homo_sapiens, _) = Organism.objects.get_or_create(name="HOMO_SAPIENS",
                                                       taxonomy_id=9606)

    experiment = Experiment()
    experiment.accession_code = "12345"
    experiment.save()
    codes = [str(i) for i in ids]

    for code in codes:
        sample = Sample()
        sample.accession_code = code
        sample.title = code
        sample.platform_accession_code = "A-MEXP-1171"
        sample.manufacturer = "SLIPPERY DICK'S DISCOUNT MICROARRAYS"
        sample.organism = homo_sapiens
        sample.technology = "MICROARRAY"
        sample.is_processed = True
        sample.save()

        cr = ComputationalResult()
        cr.save()

        computed_file = ComputedFile()
        computed_file.filename = code + ".tsv"
        computed_file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv"
        computed_file.size_in_bytes = int(code)
        computed_file.result = cr
        computed_file.is_smashable = True
        computed_file.save()

        scfa = SampleComputedFileAssociation()
        scfa.sample = sample
        scfa.computed_file = computed_file
        scfa.save()

        exsa = ExperimentSampleAssociation()
        exsa.experiment = experiment
        exsa.sample = sample
        exsa.save()
Пример #8
0
def create_sample_for_experiment(sample_info: Dict,
                                 experiment: Experiment) -> Sample:
    result = ComputationalResult()
    result.save()

    sample = Sample()
    sample.accession_code = sample_info["accession_code"]
    sample.title = sample_info.get("title",
                                   None) or sample_info["accession_code"]
    sample.organism = sample_info["organism"]
    sample.technology = sample_info["technology"]
    sample.save()

    sra = SampleResultAssociation()
    sra.sample = sample
    sra.result = result
    sra.save()

    esa = ExperimentSampleAssociation()
    esa.experiment = experiment
    esa.sample = sample
    esa.save()

    if sample_info.get("filename") is not None:
        computed_file = ComputedFile()
        computed_file.filename = sample_info["filename"]
        computed_file.absolute_file_path = sample_info[
            "data_dir"] + sample_info["filename"]
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

    return sample
Пример #9
0
    def test_qn_reference(self):
        job = ProcessorJob()
        job.pipeline_applied = "QN_REFERENCE"
        job.save()

        homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS")

        experiment = Experiment()
        experiment.accession_code = "12345"
        experiment.save()

        for code in ['1', '2', '3', '4', '5', '6']:
            sample = Sample()
            sample.accession_code = code
            sample.title = code
            sample.platform_accession_code = 'A-MEXP-1171'
            sample.manufacturer = "SLIPPERY DICK'S DISCOUNT MICROARRAYS"
            sample.organism = homo_sapiens
            sample.technology = "MICROARRAY"
            sample.is_processed = True
            sample.save()

            cr = ComputationalResult()
            cr.save()

            file = ComputedFile()
            file.filename = code + ".tsv"
            file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv"
            file.size_in_bytes = int(code)
            file.result = cr
            file.is_smashable = True
            file.save()

            scfa = SampleComputedFileAssociation()
            scfa.sample = sample
            scfa.computed_file = file
            scfa.save()

            exsa = ExperimentSampleAssociation()
            exsa.experiment = experiment
            exsa.sample = sample
            exsa.save()

        
        dataset = Dataset()
        dataset.data = {"12345": ["1", "2", "3", "4", "5", "6"]}
        dataset.aggregate_by = "ALL"
        dataset.scale_by = "NONE"
        dataset.quantile_normalize = False # We don't QN because we're creating the target now
        dataset.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = dataset
        pjda.save()

        final_context = qn_reference.create_qn_reference(job.pk)
        self.assertTrue(final_context['success'])

        self.assertTrue(os.path.exists(final_context['target_file']))
        self.assertEqual(os.path.getsize(final_context['target_file']), 556)

        target = utils.get_most_recent_qn_target_for_organism(homo_sapiens)
        self.assertEqual(target.sha1, '636d72d5cbf4b9785b0bd271a1430b615feaa7ea')

        ###
        # Smasher with QN
        ###

        pj = ProcessorJob()
        pj.pipeline_applied = "SMASHER"
        pj.save()

        ds = Dataset()
        ds.data = {"12345": ["1", "2", "3", "4", "5"]}
        ds.aggregate_by = 'SPECIES'
        ds.scale_by = 'STANDARD'
        ds.email_address = "*****@*****.**"
        ds.quantile_normalize = True
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = pj
        pjda.dataset = ds
        pjda.save()

        final_context = smasher.smash(pj.pk, upload=False)
        self.assertTrue(final_context['success'])

        self.assertEqual(final_context['merged_qn']['1'][0], -0.4379488528812934)
        self.assertEqual(final_context['original_merged']['1'][0], -0.576210936113982)

        ## 
        # Test via management command
        ##

        from django.core.management import call_command
        from django.test import TestCase
        from django.utils.six import StringIO

        out = StringIO()
        try:
            call_command('create_qn_target', organism='homo_sapiens', min=1, stdout=out)
        except SystemExit as e: # this is okay!
            pass

        stdout = out.getvalue()
        self.assertTrue('Target file' in stdout)
        path = stdout.split('\n')[0].split(':')[1].strip()
        self.assertTrue(os.path.exists(path))
        self.assertEqual(path, utils.get_most_recent_qn_target_for_organism(homo_sapiens).absolute_file_path)
Пример #10
0
    def test_no_smash_all_diff_species(self):
        """ Smashing together with 'ALL' with different species is a really weird behavior. 
        This test isn't really testing a normal case, just make sure that it's marking the
        unsmashable files.
        """

        job = ProcessorJob()
        job.pipeline_applied = "SMASHER"
        job.save()

        experiment = Experiment()
        experiment.accession_code = "GSE51081"
        experiment.save()

        result = ComputationalResult()
        result.save()

        homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS")

        sample = Sample()
        sample.accession_code = 'GSM1237810'
        sample.title = 'GSM1237810'
        sample.organism = homo_sapiens
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1237810_T09-1084.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        result = ComputationalResult()
        result.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        experiment = Experiment()
        experiment.accession_code = "GSE51084"
        experiment.save()

        mus_mus = Organism.get_object_for_name("MUS_MUSCULUS")

        sample = Sample()
        sample.accession_code = 'GSM1238108'
        sample.title = 'GSM1238108'
        sample.organism = homo_sapiens
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1238108-tbl-1.txt"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        ds = Dataset()
        ds.data = {'GSE51081': ['GSM1237810'], 'GSE51084': ['GSM1238108']}
        ds.aggregate_by = 'ALL'
        ds.scale_by = 'STANDARD'
        ds.email_address = "*****@*****.**"
        ds.quantile_normalize = False
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = ds
        pjda.save()

        final_context = smasher.smash(job.pk, upload=False)

        dsid = ds.id
        ds = Dataset.objects.get(id=dsid)
        print(ds.failure_reason)
        print(final_context['dataset'].failure_reason)

        self.assertEqual(final_context['unsmashable_files'], ['GSM1238108'])
Пример #11
0
    def test_bad_overlap(self):

        pj = ProcessorJob()
        pj.pipeline_applied = "SMASHER"
        pj.save()

        experiment = Experiment()
        experiment.accession_code = "GSE51081"
        experiment.save()

        result = ComputationalResult()
        result.save()

        homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS")

        sample = Sample()
        sample.accession_code = 'GSM1237810'
        sample.title = 'GSM1237810'
        sample.organism = homo_sapiens
        sample.save()

        sample_annotation = SampleAnnotation()
        sample_annotation.data = {'hi': 'friend'}
        sample_annotation.sample = sample
        sample_annotation.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "big.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/BADSMASH/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        sample = Sample()
        sample.accession_code = 'GSM1237812'
        sample.title = 'GSM1237812'
        sample.organism = homo_sapiens
        sample.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        computed_file = ComputedFile()
        computed_file.filename = "small.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/BADSMASH/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        ds = Dataset()
        ds.data = {'GSE51081': ['GSM1237810', 'GSM1237812']}
        ds.aggregate_by = 'ALL'  # [ALL or SPECIES or EXPERIMENT]
        ds.scale_by = 'NONE'  # [NONE or MINMAX or STANDARD or ROBUST]
        ds.email_address = "*****@*****.**"
        #ds.email_address = "*****@*****.**"
        ds.quantile_normalize = False
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = pj
        pjda.dataset = ds
        pjda.save()

        final_context = smasher.smash(pj.pk, upload=False)
        ds = Dataset.objects.get(id=ds.id)

        pj = ProcessorJob()
        pj.pipeline_applied = "SMASHER"
        pj.save()

        # Now, make sure the bad can't zero this out.
        sample = Sample()
        sample.accession_code = 'GSM999'
        sample.title = 'GSM999'
        sample.organism = homo_sapiens
        sample.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        computed_file = ComputedFile()
        computed_file.filename = "bad.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/BADSMASH/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        ds = Dataset()
        ds.data = {'GSE51081': ['GSM1237810', 'GSM1237812', 'GSM999']}
        ds.aggregate_by = 'ALL'  # [ALL or SPECIES or EXPERIMENT]
        ds.scale_by = 'NONE'  # [NONE or MINMAX or STANDARD or ROBUST]
        ds.email_address = "*****@*****.**"
        #ds.email_address = "*****@*****.**"
        ds.quantile_normalize = False
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = pj
        pjda.dataset = ds
        pjda.save()

        final_context = smasher.smash(pj.pk, upload=False)
        ds = Dataset.objects.get(id=ds.id)

        self.assertEqual(len(final_context['final_frame']), 4)
Пример #12
0
def prepare_job():
    pj = ProcessorJob()
    pj.pipeline_applied = "SMASHER"
    pj.save()

    experiment = Experiment()
    experiment.accession_code = "GSE51081"
    experiment.save()

    result = ComputationalResult()
    result.save()

    homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS")

    sample = Sample()
    sample.accession_code = 'GSM1237810'
    sample.title = 'GSM1237810'
    sample.organism = homo_sapiens
    sample.save()

    sample_annotation = SampleAnnotation()
    sample_annotation.data = {'hi': 'friend'}
    sample_annotation.sample = sample
    sample_annotation.save()

    sra = SampleResultAssociation()
    sra.sample = sample
    sra.result = result
    sra.save()

    esa = ExperimentSampleAssociation()
    esa.experiment = experiment
    esa.sample = sample
    esa.save()

    computed_file = ComputedFile()
    computed_file.filename = "GSM1237810_T09-1084.PCL"
    computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
    computed_file.result = result
    computed_file.size_in_bytes = 123
    computed_file.is_smashable = True
    computed_file.save()

    assoc = SampleComputedFileAssociation()
    assoc.sample = sample
    assoc.computed_file = computed_file
    assoc.save()

    sample = Sample()
    sample.accession_code = 'GSM1237812'
    sample.title = 'GSM1237812'
    sample.organism = homo_sapiens
    sample.save()

    esa = ExperimentSampleAssociation()
    esa.experiment = experiment
    esa.sample = sample
    esa.save()

    assoc = SampleComputedFileAssociation()
    assoc.sample = sample
    assoc.computed_file = computed_file
    assoc.save()

    sra = SampleResultAssociation()
    sra.sample = sample
    sra.result = result
    sra.save()

    computed_file = ComputedFile()
    computed_file.filename = "GSM1237812_S97-PURE.PCL"
    computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
    computed_file.result = result
    computed_file.size_in_bytes = 123
    computed_file.is_smashable = True
    computed_file.save()

    computed_file = ComputedFile()
    computed_file.filename = "GSM1237812_S97-PURE.DAT"
    computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
    computed_file.result = result
    computed_file.size_in_bytes = 123
    computed_file.is_smashable = False
    computed_file.save()

    assoc = SampleComputedFileAssociation()
    assoc.sample = sample
    assoc.computed_file = computed_file
    assoc.save()

    ds = Dataset()
    ds.data = {'GSE51081': ['GSM1237810', 'GSM1237812']}
    ds.aggregate_by = 'EXPERIMENT'  # [ALL or SPECIES or EXPERIMENT]
    ds.scale_by = 'STANDARD'  # [NONE or MINMAX or STANDARD or ROBUST]
    ds.email_address = "*****@*****.**"
    #ds.email_address = "*****@*****.**"
    ds.quantile_normalize = False
    ds.save()

    pjda = ProcessorJobDatasetAssociation()
    pjda.processor_job = pj
    pjda.dataset = ds
    pjda.save()

    return pj
Пример #13
0
    def test_create_compendia(self):
        job = ProcessorJob()
        job.pipeline_applied = ProcessorPipeline.CREATE_COMPENDIA.value
        job.save()

        # MICROARRAY TECH
        experiment = Experiment()
        experiment.accession_code = "GSE1487313"
        experiment.save()

        result = ComputationalResult()
        result.save()

        gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS",
                                                     taxonomy_id=1001)

        sample = Sample()
        sample.accession_code = "GSM1487313"
        sample.title = "GSM1487313"
        sample.organism = gallus_gallus
        sample.technology = "MICROARRAY"
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1487313_liver.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        # Missing sample that will be filtered
        sample = Sample()
        sample.accession_code = "GSM1487222"
        sample.title = "this sample will be filtered"
        sample.organism = gallus_gallus
        sample.technology = "MICROARRAY"
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1487222_empty.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/doesnt_exists.PCL"
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        # RNASEQ TECH
        experiment2 = Experiment()
        experiment2.accession_code = "SRS332914"
        experiment2.save()

        result2 = ComputationalResult()
        result2.save()

        sample2 = Sample()
        sample2.accession_code = "SRS332914"
        sample2.title = "SRS332914"
        sample2.organism = gallus_gallus
        sample2.technology = "RNA-SEQ"
        sample2.save()

        sra2 = SampleResultAssociation()
        sra2.sample = sample2
        sra2.result = result2
        sra2.save()

        esa2 = ExperimentSampleAssociation()
        esa2.experiment = experiment2
        esa2.sample = sample2
        esa2.save()

        computed_file2 = ComputedFile()
        computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv"
        computed_file2.absolute_file_path = "/home/user/data_store/PCL/" + computed_file2.filename
        computed_file2.result = result2
        computed_file2.size_in_bytes = 234
        computed_file2.is_smashable = True
        computed_file2.save()

        assoc2 = SampleComputedFileAssociation()
        assoc2.sample = sample2
        assoc2.computed_file = computed_file2
        assoc2.save()

        dset = Dataset()
        dset.data = {
            "GSE1487313": ["GSM1487313", "GSM1487222"],
            "SRX332914": ["SRS332914"]
        }
        dset.scale_by = "NONE"
        dset.aggregate_by = "SPECIES"
        dset.svd_algorithm = "ARPACK"
        dset.quantile_normalize = False
        dset.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = dset
        pjda.save()

        final_context = create_compendia.create_compendia(job.id)

        self.assertFalse(job.success)

        # check that sample with no computed file was skipped
        self.assertTrue("GSM1487222" in final_context["filtered_samples"])
        self.assertEqual(
            final_context["filtered_samples"]["GSM1487222"]
            ["experiment_accession_code"],
            "GSE1487313",
        )
Пример #14
0
    def test_create_quantpendia(self):
        job = ProcessorJob()
        job.pipeline_applied = ProcessorPipeline.CREATE_QUANTPENDIA.value
        job.save()

        experiment = Experiment()
        experiment.accession_code = "GSE51088"
        experiment.save()

        result = ComputationalResult()
        result.save()

        homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS",
                                                    taxonomy_id=9606)

        sample = Sample()
        sample.accession_code = "GSM1237818"
        sample.title = "GSM1237818"
        sample.organism = homo_sapiens
        sample.technology = "RNA-SEQ"
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.s3_key = "smasher-test-quant.sf"
        computed_file.s3_bucket = "data-refinery-test-assets"
        computed_file.filename = "quant.sf"
        computed_file.absolute_file_path = "/home/user/data_store/QUANT/smasher-test-quant.sf"
        computed_file.result = result
        computed_file.is_smashable = True
        computed_file.size_in_bytes = 123123
        computed_file.sha1 = (
            "08c7ea90b66b52f7cd9d9a569717a1f5f3874967"  # this matches with the downloaded file
        )
        computed_file.save()

        computed_file = ComputedFile()
        computed_file.filename = "logquant.tsv"
        computed_file.is_smashable = True
        computed_file.size_in_bytes = 123123
        computed_file.result = result
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        ds = Dataset()
        ds.data = {"GSE51088": ["GSM1237818"]}
        ds.aggregate_by = "EXPERIMENT"
        ds.scale_by = "STANDARD"
        ds.email_address = "*****@*****.**"
        ds.quant_sf_only = True  # Make the dataset include quant.sf files only
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = ds
        pjda.save()

        final_context = create_quantpendia(job.id)

        self.assertTrue(
            os.path.exists(final_context["output_dir"] +
                           "/GSE51088/GSM1237818_quant.sf"))
        self.assertTrue(
            os.path.exists(final_context["output_dir"] + "/README.md"))
        self.assertTrue(
            os.path.exists(final_context["output_dir"] + "/LICENSE.TXT"))
        self.assertTrue(
            os.path.exists(final_context["output_dir"] +
                           "/aggregated_metadata.json"))

        self.assertTrue(final_context["metadata"]["quant_sf_only"])
        self.assertEqual(final_context["metadata"]["num_samples"], 1)
        self.assertEqual(final_context["metadata"]["num_experiments"], 1)

        # test that archive exists
        quantpendia_file = ComputedFile.objects.filter(
            is_compendia=True, quant_sf_only=True).latest()
        self.assertTrue(os.path.exists(quantpendia_file.absolute_file_path))
Пример #15
0
def prepare_computed_files():
    # MICROARRAY TECH
    experiment = Experiment()
    experiment.accession_code = "GSE1487313"
    experiment.num_processed_samples = 1
    experiment.save()

    result = ComputationalResult()
    result.save()

    gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS",
                                                 taxonomy_id=1001)

    sample = Sample()
    sample.accession_code = "GSM1487313"
    sample.title = "GSM1487313"
    sample.organism = gallus_gallus
    sample.technology = "MICROARRAY"
    sample.is_processed = True
    sample.save()

    sra = SampleResultAssociation()
    sra.sample = sample
    sra.result = result
    sra.save()

    esa = ExperimentSampleAssociation()
    esa.experiment = experiment
    esa.sample = sample
    esa.save()

    computed_file = ComputedFile()
    computed_file.filename = "GSM1487313_liver.PCL"
    computed_file.result = result
    computed_file.size_in_bytes = 123
    computed_file.is_smashable = True
    computed_file.s3_key = "GSM1487313_liver.PCL"
    computed_file.s3_bucket = TEST_DATA_BUCKET
    computed_file.save()

    assoc = SampleComputedFileAssociation()
    assoc.sample = sample
    assoc.computed_file = computed_file
    assoc.save()

    # RNASEQ TECH
    experiment2 = Experiment()
    experiment2.accession_code = "SRP332914"
    experiment2.num_processed_samples = 1
    experiment2.save()

    result2 = ComputationalResult()
    result2.save()

    sample2 = Sample()
    sample2.accession_code = "SRR332914"
    sample2.title = "SRR332914"
    sample2.organism = gallus_gallus
    sample2.technology = "RNA-SEQ"
    sample2.is_processed = True
    sample2.save()

    sra2 = SampleResultAssociation()
    sra2.sample = sample2
    sra2.result = result2
    sra2.save()

    esa2 = ExperimentSampleAssociation()
    esa2.experiment = experiment2
    esa2.sample = sample2
    esa2.save()

    computed_file2 = ComputedFile()
    computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv"
    computed_file2.result = result2
    computed_file2.size_in_bytes = 234
    computed_file2.is_smashable = True
    computed_file2.s3_key = "SRP149598_gene_lengthScaledTPM.tsv"
    computed_file2.s3_bucket = TEST_DATA_BUCKET
    computed_file2.save()

    assoc2 = SampleComputedFileAssociation()
    assoc2.sample = sample2
    assoc2.computed_file = computed_file2
    assoc2.save()
Пример #16
0
    def test_log2(self):
        pj = ProcessorJob()
        pj.pipeline_applied = "SMASHER"
        pj.save()

        # Has non-log2 data:
        # https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44421
        # ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE44nnn/GSE44421/miniml/GSE44421_family.xml.tgz
        experiment = Experiment()
        experiment.accession_code = "GSE44421"
        experiment.save()

        result = ComputationalResult()
        result.save()

        homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS")

        sample = Sample()
        sample.accession_code = 'GSM1084806'
        sample.title = 'GSM1084806'
        sample.organism = homo_sapiens
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1084806-tbl-1.txt"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        sample = Sample()
        sample.accession_code = 'GSM1084807'
        sample.title = 'GSM1084807'
        sample.organism = homo_sapiens
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1084807-tbl-1.txt"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        ds = Dataset()
        ds.data = {'GSE44421': ['GSM1084806', 'GSM1084807']}
        ds.aggregate_by = 'EXPERIMENT'
        ds.scale_by = 'MINMAX'
        ds.email_address = "*****@*****.**"
        ds.quantile_normalize = False
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = pj
        pjda.dataset = ds
        pjda.save()

        final_context = smasher.smash(pj.pk, upload=False)
        ds = Dataset.objects.get(id=ds.id)

        self.assertTrue(final_context['success'])
Пример #17
0
    def test_no_smash_dupe(self):
        """ """

        job = ProcessorJob()
        job.pipeline_applied = "SMASHER"
        job.save()

        experiment = Experiment()
        experiment.accession_code = "GSE51081"
        experiment.save()

        result = ComputationalResult()
        result.save()

        homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS")

        sample = Sample()
        sample.accession_code = 'GSM1237810'
        sample.title = 'GSM1237810'
        sample.organism = homo_sapiens
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1237810_T09-1084.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        result = ComputationalResult()
        result.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        sample = Sample()
        sample.accession_code = 'GSM1237811'
        sample.title = 'GSM1237811'
        sample.organism = homo_sapiens
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        result = ComputationalResult()
        result.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        ds = Dataset()
        ds.data = {'GSE51081': ['GSM1237810', 'GSM1237811']}
        ds.aggregate_by = 'ALL'
        ds.scale_by = 'STANDARD'
        ds.email_address = "*****@*****.**"
        ds.quantile_normalize = False
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = ds
        pjda.save()

        final_context = smasher.smash(job.pk, upload=False)

        dsid = ds.id
        ds = Dataset.objects.get(id=dsid)

        self.assertTrue(ds.success)
        for column in final_context['original_merged'].columns:
            self.assertTrue('_x' not in column)
Пример #18
0
    def test_no_smash_dupe_two(self):
        """ Tests the SRP051449 case, where the titles collide. Also uses a real QN target file."""

        job = ProcessorJob()
        job.pipeline_applied = "SMASHER"
        job.save()

        experiment = Experiment()
        experiment.accession_code = "SRP051449"
        experiment.save()

        result = ComputationalResult()
        result.save()

        danio_rerio = Organism.get_object_for_name("DANIO_RERIO")

        sample = Sample()
        sample.accession_code = 'SRR1731761'
        sample.title = 'Danio rerio'
        sample.organism = danio_rerio
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "SRR1731761_output_gene_lengthScaledTPM.tsv"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        result = ComputationalResult()
        result.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        sample = Sample()
        sample.accession_code = 'SRR1731762'
        sample.title = 'Danio rerio'
        sample.organism = danio_rerio
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "SRR1731762_output_gene_lengthScaledTPM.tsv"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        result = ComputationalResult()
        result.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        ds = Dataset()
        ds.data = {'SRP051449': ['SRR1731761', 'SRR1731762']}
        ds.aggregate_by = 'SPECIES'
        ds.scale_by = 'NONE'
        ds.email_address = "*****@*****.**"
        ds.quantile_normalize = True
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = ds
        pjda.save()

        cr = ComputationalResult()
        cr.save()

        computed_file = ComputedFile()
        computed_file.filename = "danio_target.tsv"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = cr
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = False
        computed_file.save()

        cra = ComputationalResultAnnotation()
        cra.data = {'organism_id': danio_rerio.id, 'is_qn': True}
        cra.result = cr
        cra.save()

        final_context = smasher.smash(job.pk, upload=False)
        self.assertTrue(final_context['success'])
Пример #19
0
    def test_create_compendia_danio(self):
        job = ProcessorJob()
        job.pipeline_applied = "COMPENDIA"
        job.save()

        # MICROARRAY TECH
        experiment = Experiment()
        experiment.accession_code = "GSE1234"
        experiment.save()

        result = ComputationalResult()
        result.save()

        danio_rerio = Organism.get_object_for_name("DANIO_RERIO")

        micros = []
        for file in os.listdir('/home/user/data_store/raw/TEST/MICROARRAY/'):

            if 'microarray.txt' in file:
                continue

            sample = Sample()
            sample.accession_code = file
            sample.title = file
            sample.organism = danio_rerio
            sample.technology = "MICROARRAY"
            sample.save()

            sra = SampleResultAssociation()
            sra.sample = sample
            sra.result = result
            sra.save()

            esa = ExperimentSampleAssociation()
            esa.experiment = experiment
            esa.sample = sample
            esa.save()

            computed_file = ComputedFile()
            computed_file.filename = file
            computed_file.absolute_file_path = "/home/user/data_store/raw/TEST/MICROARRAY/" + file
            computed_file.result = result
            computed_file.size_in_bytes = 123
            computed_file.is_smashable = True
            computed_file.save()

            assoc = SampleComputedFileAssociation()
            assoc.sample = sample
            assoc.computed_file = computed_file
            assoc.save()

            micros.append(file)

        experiment = Experiment()
        experiment.accession_code = "GSE5678"
        experiment.save()

        result = ComputationalResult()
        result.save()
        rnas = []
        for file in os.listdir('/home/user/data_store/raw/TEST/RNASEQ/'):

            if 'rnaseq.txt' in file:
                continue

            sample = Sample()
            sample.accession_code = file
            sample.title = file
            sample.organism = danio_rerio
            sample.technology = "RNASEQ"
            sample.save()

            sra = SampleResultAssociation()
            sra.sample = sample
            sra.result = result
            sra.save()

            esa = ExperimentSampleAssociation()
            esa.experiment = experiment
            esa.sample = sample
            esa.save()

            computed_file = ComputedFile()
            computed_file.filename = file
            computed_file.absolute_file_path = "/home/user/data_store/raw/TEST/RNASEQ/" + file
            computed_file.result = result
            computed_file.size_in_bytes = 123
            computed_file.is_smashable = True
            computed_file.save()

            assoc = SampleComputedFileAssociation()
            assoc.sample = sample
            assoc.computed_file = computed_file
            assoc.save()

            rnas.append(file)

        result = ComputationalResult()
        result.save()

        qn_target = ComputedFile()
        qn_target.filename = "danio_target.tsv"
        qn_target.absolute_file_path = '/home/user/data_store/QN/danio_target.tsv'
        qn_target.is_qn_target = True
        qn_target.size_in_bytes = "12345"
        qn_target.sha1 = "aabbccddeeff"
        qn_target.result = result
        qn_target.save()

        cra = ComputationalResultAnnotation()
        cra.data = {}
        cra.data['organism_id'] = danio_rerio.id
        cra.data['is_qn'] = True
        cra.result = result
        cra.save()

        dset = Dataset()
        dset.data = {'GSE1234': micros, 'GSE5678': rnas}
        dset.scale_by = 'NONE'
        dset.aggregate_by = 'SPECIES'
        dset.quantile_normalize = False
        dset.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = dset
        pjda.save()

        final_context = create_compendia.create_compendia(job.id)

        # Verify result
        self.assertEqual(len(final_context['computed_files']), 3)
        for file in final_context['computed_files']:
            self.assertTrue(os.path.exists(file.absolute_file_path))
Пример #20
0
    def test_dualtech_smash(self):
        """ """

        pj = ProcessorJob()
        pj.pipeline_applied = "SMASHER"
        pj.save()

        # MICROARRAY TECH
        experiment = Experiment()
        experiment.accession_code = "GSE1487313"
        experiment.save()

        result = ComputationalResult()
        result.save()

        gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS")

        sample = Sample()
        sample.accession_code = 'GSM1487313'
        sample.title = 'GSM1487313'
        sample.organism = gallus_gallus
        sample.technology = "MICROARRAY"
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1487313_liver.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        # RNASEQ TECH
        experiment2 = Experiment()
        experiment2.accession_code = "SRS332914"
        experiment2.save()

        result2 = ComputationalResult()
        result2.save()

        sample2 = Sample()
        sample2.accession_code = 'SRS332914'
        sample2.title = 'SRS332914'
        sample2.organism = gallus_gallus
        sample2.technology = "RNA-SEQ"
        sample2.save()

        sra2 = SampleResultAssociation()
        sra2.sample = sample2
        sra2.result = result2
        sra2.save()

        esa2 = ExperimentSampleAssociation()
        esa2.experiment = experiment2
        esa2.sample = sample2
        esa2.save()

        computed_file2 = ComputedFile()
        computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv"
        computed_file2.absolute_file_path = "/home/user/data_store/PCL/" + computed_file2.filename
        computed_file2.result = result2
        computed_file2.size_in_bytes = 234
        computed_file2.is_smashable = True
        computed_file2.save()

        assoc2 = SampleComputedFileAssociation()
        assoc2.sample = sample2
        assoc2.computed_file = computed_file2
        assoc2.save()

        # CROSS-SMASH BY SPECIES
        ds = Dataset()
        ds.data = {'GSE1487313': ['GSM1487313'], 'SRX332914': ['SRS332914']}
        ds.aggregate_by = 'SPECIES'
        ds.scale_by = 'STANDARD'
        ds.email_address = "*****@*****.**"
        ds.quantile_normalize = False
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = pj
        pjda.dataset = ds
        pjda.save()

        self.assertTrue(ds.is_cross_technology())
        final_context = smasher.smash(pj.pk, upload=False)
        self.assertTrue(os.path.exists(final_context['output_file']))
        os.remove(final_context['output_file'])
        self.assertEqual(len(final_context['final_frame'].columns), 2)

        # THEN BY EXPERIMENT
        ds.aggregate_by = 'EXPERIMENT'
        ds.save()

        dsid = ds.id
        ds = Dataset.objects.get(id=dsid)

        pj.start_time = None
        pj.end_time = None
        pj.save()

        final_context = smasher.smash(pj.pk, upload=False)
        self.assertTrue(os.path.exists(final_context['output_file']))
        os.remove(final_context['output_file'])
        self.assertEqual(len(final_context['final_frame'].columns), 1)

        # THEN BY ALL
        ds.aggregate_by = 'ALL'
        ds.save()

        dsid = ds.id
        ds = Dataset.objects.get(id=dsid)

        pj.start_time = None
        pj.end_time = None
        pj.save()
        final_context = smasher.smash(pj.pk, upload=False)
        self.assertTrue(os.path.exists(final_context['output_file']))
        self.assertEqual(len(final_context['final_frame'].columns), 2)
Пример #21
0
    def test_create_compendia(self):
        job = ProcessorJob()
        job.pipeline_applied = "COMPENDIA"
        job.save()

        # MICROARRAY TECH
        experiment = Experiment()
        experiment.accession_code = "GSE1487313"
        experiment.save()

        result = ComputationalResult()
        result.save()

        gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS")

        sample = Sample()
        sample.accession_code = 'GSM1487313'
        sample.title = 'GSM1487313'
        sample.organism = gallus_gallus
        sample.technology = "MICROARRAY"
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        computed_file = ComputedFile()
        computed_file.filename = "GSM1487313_liver.PCL"
        computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename
        computed_file.result = result
        computed_file.size_in_bytes = 123
        computed_file.is_smashable = True
        computed_file.save()

        assoc = SampleComputedFileAssociation()
        assoc.sample = sample
        assoc.computed_file = computed_file
        assoc.save()

        # RNASEQ TECH
        experiment2 = Experiment()
        experiment2.accession_code = "SRS332914"
        experiment2.save()

        result2 = ComputationalResult()
        result2.save()

        sample2 = Sample()
        sample2.accession_code = 'SRS332914'
        sample2.title = 'SRS332914'
        sample2.organism = gallus_gallus
        sample2.technology = "RNA-SEQ"
        sample2.save()

        sra2 = SampleResultAssociation()
        sra2.sample = sample2
        sra2.result = result2
        sra2.save()

        esa2 = ExperimentSampleAssociation()
        esa2.experiment = experiment2
        esa2.sample = sample2
        esa2.save()

        computed_file2 = ComputedFile()
        computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv"
        computed_file2.absolute_file_path = "/home/user/data_store/PCL/" + computed_file2.filename
        computed_file2.result = result2
        computed_file2.size_in_bytes = 234
        computed_file2.is_smashable = True
        computed_file2.save()

        assoc2 = SampleComputedFileAssociation()
        assoc2.sample = sample2
        assoc2.computed_file = computed_file2
        assoc2.save()

        dset = Dataset()
        dset.data = {'GSE1487313': ['GSM1487313'], 'SRX332914': ['SRS332914']}
        dset.scale_by = 'NONE'
        dset.aggregate_by = 'SPECIES'
        dset.quantile_normalize = False
        dset.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = dset
        pjda.save()

        final_context = create_compendia.create_compendia(job.id)
Пример #22
0
    def test_qn_reference(self):
        job = ProcessorJob()
        job.pipeline_applied = "QN_REFERENCE"
        job.save()

        homo_sapiens = Organism(name="HOMO_SAPIENS", taxonomy_id=9606)
        homo_sapiens.save()

        experiment = Experiment()
        experiment.accession_code = "12345"
        experiment.save()
        # We don't have a 0.tsv
        codes = [str(i) for i in range(1, 201)]

        for code in codes:
            sample = Sample()
            sample.accession_code = code
            sample.title = code
            sample.platform_accession_code = "A-MEXP-1171"
            sample.manufacturer = "SLIPPERY DICK'S DISCOUNT MICROARRAYS"
            sample.organism = homo_sapiens
            sample.technology = "MICROARRAY"
            sample.is_processed = True
            sample.save()

            cr = ComputationalResult()
            cr.save()

            computed_file = ComputedFile()
            computed_file.filename = code + ".tsv"
            computed_file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv"
            computed_file.size_in_bytes = int(code)
            computed_file.result = cr
            computed_file.is_smashable = True
            computed_file.save()

            scfa = SampleComputedFileAssociation()
            scfa.sample = sample
            scfa.computed_file = computed_file
            scfa.save()

            exsa = ExperimentSampleAssociation()
            exsa.experiment = experiment
            exsa.sample = sample
            exsa.save()

        dataset = Dataset()
        dataset.data = {"12345": ["1", "2", "3", "4", "5", "6"]}
        dataset.aggregate_by = "ALL"
        dataset.scale_by = "NONE"
        dataset.quantile_normalize = False  # We don't QN because we're creating the target now
        dataset.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = dataset
        pjda.save()

        final_context = qn_reference.create_qn_reference(job.pk)
        self.assertTrue(final_context["success"])
        self.assertTrue(os.path.exists(final_context["target_file"]))
        self.assertEqual(os.path.getsize(final_context["target_file"]), 562)

        homo_sapiens.refresh_from_db()
        target = homo_sapiens.qn_target.computedfile_set.latest()
        self.assertEqual(target.sha1, "de69d348f8b239479e2330d596c4013a7b0b2b6a")

        # Create and run a smasher job that will use the QN target we just made.
        pj = ProcessorJob()
        pj.pipeline_applied = "SMASHER"
        pj.save()

        ds = Dataset()
        ds.data = {"12345": ["1", "2", "3", "4", "5"]}
        ds.aggregate_by = "SPECIES"
        ds.scale_by = "STANDARD"
        ds.email_address = "*****@*****.**"
        ds.quantile_normalize = True
        ds.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = pj
        pjda.dataset = ds
        pjda.save()

        final_context = smasher.smash(pj.pk, upload=False)
        self.assertTrue(final_context["success"])

        np.testing.assert_almost_equal(final_context["merged_qn"]["1"][0], -0.4379488527774811)
        np.testing.assert_almost_equal(final_context["original_merged"]["1"][0], -0.5762109)
Пример #23
0
    def test_create_compendia_danio(self):
        job = ProcessorJob()
        job.pipeline_applied = ProcessorPipeline.CREATE_COMPENDIA.value
        job.save()

        # MICROARRAY TECH
        experiment = Experiment()
        experiment.accession_code = "GSE1234"
        experiment.save()

        result = ComputationalResult()
        result.save()

        qn_target = ComputedFile()
        qn_target.filename = "danio_target.tsv"
        qn_target.absolute_file_path = "/home/user/data_store/QN/danio_target.tsv"
        qn_target.is_qn_target = True
        qn_target.size_in_bytes = "12345"
        qn_target.sha1 = "aabbccddeeff"
        qn_target.result = result
        qn_target.save()

        danio_rerio = Organism(name="DANIO_RERIO",
                               taxonomy_id=1,
                               qn_target=result)
        danio_rerio.save()

        cra = ComputationalResultAnnotation()
        cra.data = {}
        cra.data["organism_id"] = danio_rerio.id
        cra.data["is_qn"] = True
        cra.result = result
        cra.save()

        result = ComputationalResult()
        result.save()

        micros = []
        for file in os.listdir("/home/user/data_store/raw/TEST/MICROARRAY/"):

            if "microarray.txt" in file:
                continue

            sample = Sample()
            sample.accession_code = file
            sample.title = file
            sample.organism = danio_rerio
            sample.technology = "MICROARRAY"
            sample.save()

            sra = SampleResultAssociation()
            sra.sample = sample
            sra.result = result
            sra.save()

            esa = ExperimentSampleAssociation()
            esa.experiment = experiment
            esa.sample = sample
            esa.save()

            computed_file = ComputedFile()
            computed_file.filename = file
            computed_file.absolute_file_path = "/home/user/data_store/raw/TEST/MICROARRAY/" + file
            computed_file.result = result
            computed_file.size_in_bytes = 123
            computed_file.is_smashable = True
            computed_file.save()

            assoc = SampleComputedFileAssociation()
            assoc.sample = sample
            assoc.computed_file = computed_file
            assoc.save()

            micros.append(file)

        experiment = Experiment()
        experiment.accession_code = "GSE5678"
        experiment.save()

        result = ComputationalResult()
        result.save()
        rnas = []
        for file in os.listdir("/home/user/data_store/raw/TEST/RNASEQ/"):

            if "rnaseq.txt" in file:
                continue

            sample = Sample()
            sample.accession_code = file
            sample.title = file
            sample.organism = danio_rerio
            sample.technology = "RNASEQ"
            sample.save()

            sra = SampleResultAssociation()
            sra.sample = sample
            sra.result = result
            sra.save()

            esa = ExperimentSampleAssociation()
            esa.experiment = experiment
            esa.sample = sample
            esa.save()

            computed_file = ComputedFile()
            computed_file.filename = file
            computed_file.absolute_file_path = "/home/user/data_store/raw/TEST/RNASEQ/" + file
            computed_file.result = result
            computed_file.size_in_bytes = 123
            computed_file.is_smashable = True
            computed_file.save()

            assoc = SampleComputedFileAssociation()
            assoc.sample = sample
            assoc.computed_file = computed_file
            assoc.save()

            rnas.append(file)

        # Missing sample that will be filtered
        sample = Sample()
        sample.accession_code = "GSM1487222"
        sample.title = "this sample will be filtered"
        sample.organism = danio_rerio
        sample.technology = "RNASEQ"
        sample.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        esa = ExperimentSampleAssociation()
        esa.experiment = experiment
        esa.sample = sample
        esa.save()

        rnas.append(sample.accession_code)

        dset = Dataset()
        dset.data = {"GSE1234": micros, "GSE5678": rnas}
        dset.scale_by = "NONE"
        dset.aggregate_by = "SPECIES"
        dset.svd_algorithm = "ARPACK"
        dset.quantile_normalize = False
        dset.save()

        pjda = ProcessorJobDatasetAssociation()
        pjda.processor_job = job
        pjda.dataset = dset
        pjda.save()

        final_context = create_compendia.create_compendia(job.id)

        # Verify result
        self.assertEqual(
            final_context["compendium_result"].result.computedfile_set.count(),
            1)
        for file in final_context[
                "compendium_result"].result.computedfile_set.all():
            self.assertTrue(os.path.exists(file.absolute_file_path))

        # test compendium_result
        self.assertEqual(final_context["compendium_result"].svd_algorithm,
                         "ARPACK")
        self.assertEqual(
            final_context["compendium_result"].primary_organism.name,
            final_context["organism_name"])
        self.assertEqual(
            final_context["compendium_result"].primary_organism.name,
            "DANIO_RERIO")
        self.assertEqual(final_context["compendium_result"].organisms.count(),
                         1)

        # check that sample with no computed file was skipped
        self.assertTrue("GSM1487222" in final_context["filtered_samples"])
        self.assertEqual(
            final_context["filtered_samples"]["GSM1487222"]
            ["experiment_accession_code"], "GSE5678")