Пример #1
0
def sh50_buy_worst_ma(engine, start_day, end_day, max_hold, howlong, base_code,
                      base_name):  # N日相对均线最遭

    #从DB抓日线数据
    conn = engine.connect()

    # 获取日线数据
    # 返回数组
    #     T_day1,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
    #     T_day2,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
    #     T_day3,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
    #     ...
    # 其中‘行情’ 是  [收盘价,前日收盘,涨幅, 涨停标志,停牌标志]
    his_md = db_operator.db_fetch_dailyline(conn, start_day)

    # 在日线数据中,扩充加入指标数据
    # 返回时,数组md_his_data扩充为
    #     T_day1, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的行情, 证券2:证券2的行情, ... }
    #     T_day2, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的行情, 证券2:证券2的行情, ... }
    #     T_day3, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的行情, 证券2:证券2的行情, ... }
    #     ...

    # ‘指标’ 是  [可买标志,均线偏离度, 均线]
    make_indices_by_MA_delta(conn, his_md, howlong)

    result, trans_num, trans_cost = sim_rotate_buy_worst(
        his_md, max_hold, howlong, base_code, start_day, end_day)
    # Output: 2-D array , 交易数, 交易成本
    #         日期  基准收盘价   策略净值 交易次数  换仓详细
    #         ...
    #

    #util.bp( result)
    #准备画图

    #chart_head = ['日期', '50指数', 'MA10'  ]
    #chart_data=[]
    #for entry in his_md:
    #    row = [ entry[0], entry[1][FH_BASE_CODE][0] , entry[2][FH_BASE_CODE][2] ]
    #    chart_data.append(row)
    #plotter.simple_generate_line_chart( chart_head, chart_data)

    base_info = data_struct.SecurityInfo()
    base_info.code = base_code
    base_info.name = base_name

    secs = [base_info]

    suffix = ".from_%s" % start_day

    plotter.generate_htm_chart_for_faster_horse2(secs, result, suffix)

    #show summary
    t_day_num = len(result)
    base_delta = result[t_day_num - 1][1] / result[0][1]
    policy_delta = result[t_day_num - 1][2] / result[0][2]

    print "%d日最糟, %s ~ %s, %d个交易日,交易%d笔,交易成本%f,基准表现%f,策略表现%f" % (
        howlong, result[0][0], result[t_day_num - 1][0], t_day_num, trans_num,
        trans_cost, base_delta, policy_delta)
Пример #2
0
def bt_brk_pb_policy(engine, start_day, end_day,max_hold, threshold ):
    #从DB抓日线数据
    conn = engine.connect()

    # 获取日线数据
# 返回数组
#     T_day1,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
#     T_day2,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
#     T_day3,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
#     ...
# 其中‘行情’ 是  [收盘价,前日收盘,涨幅, 涨停标志,停牌标志, PB, 换手]
    his_md = db_operator. db_fetch_dailyline_w_valuation(conn, threshold )

    # 在日线数据中,扩充加入指标数据
# 返回时,数组md_his_data扩充为
#     T_day1, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的指标, 证券2:证券2的指标, ... }
#     T_day2, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的指标, 证券2:证券2的指标, ... }
#     T_day3, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的指标, 证券2:证券2的指标, ... }
#     ...

    # ‘指标’ 是  [可买标志,PB偏离度, PB, N日PB平均,N日PB标准差]
    make_indices_by_pb_standard_deviation( conn,  his_md , threshold)
 
    result, trans_num, trans_cost  = sim_brk_pb_policy( conn,his_md, max_hold , BRK_INDEX, start_day, end_day )    
# Output: 2-D array , 交易数, 交易成本
#         日期  基准收盘价   策略净值 交易次数  换仓详细  
#         ...
#

    #util.bp( result)
    #准备画图

    #chart_head = ['日期', '50指数', 'MA10'  ]
    #chart_data=[]
    #for entry in his_md:
    #    row = [ entry[0], entry[1][FH_BASE_CODE][0] , entry[2][FH_BASE_CODE][2] ]
    #    chart_data.append(row)
    #plotter.simple_generate_line_chart( chart_head, chart_data)

    base_info = data_struct.SecurityInfo()
    base_info.code = BRK_INDEX 
    base_info.name = BRK_INDEX_NAME

    secs = [ base_info ]

    suffix = ".from_%s" % start_day

    plotter.generate_htm_chart_for_faster_horse2( secs, result , suffix)
 
    #show summary
    t_day_num = len(result)
    base_delta   = result[ t_day_num - 1][1] / result[ 0][1]
    policy_delta = result[ t_day_num - 1][2] / result[ 0][2]

    print "券商PB策略(%d日), %s ~ %s, %d个交易日,交易%d笔,交易成本%f,基准表现%f,策略表现%f" % (
             threshold 
            , result[0][0], result[ t_day_num - 1][0], t_day_num
            , trans_num,  trans_cost
            , base_delta, policy_delta 
            )
Пример #3
0
def fh50_until_now(engine, start_year):

    now = datetime.now()

    #从DB抓日线数据
    start_day = "%d-01-01" % start_year

    conn = engine.connect()

    # 获取日线数据
    # 返回数组
    #     T_day1,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
    #     T_day2,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
    #     T_day3,  {证券1:证券1的行情, 证券2:证券2的行情, ...   }
    #     ...
    # 其中‘行情’ 是  [收盘价,前日收盘,涨幅, 涨停标志,停牌标志]

    his_md = db_operator.db_fetch_dailyline(conn, start_day)

    # 在日线数据中,扩充加入指标数据
    # 返回时,数组md_his_data扩充为
    #     T_day1, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的行情, 证券2:证券2的行情, ... }
    #     T_day2, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的行情, 证券2:证券2的行情, ... }
    #     T_day3, {证券1:证券1的行情, 证券2:证券2的行情, ... }, {证券1:证券1的行情, 证券2:证券2的行情, ... }
    #     ...

    # ‘指标’ 是  [可买标志,三日累计涨幅]
    make_indices_by_delta(conn, his_md)

    #util.bp_as_json( his_md)
    #util.bp( his_md)

    result, trans_num, trans_cost = sim_rotate(his_md, 3, FH_BASE_CODE,
                                               start_day, end_day)
    # Output: 2-D array , 交易数, 交易成本
    #         日期  基准收盘价   策略净值 交易次数  换仓详细
    #         ...
    #

    #util.bp( result)
    #准备画图
    base_info = data_struct.SecurityInfo()
    base_info.code = FH_BASE_CODE
    base_info.name = FH_BASE_NAME

    secs = [base_info]

    suffix = ".from_%d" % start_year

    plotter.generate_htm_chart_for_faster_horse2(secs, result, suffix)

    #show summary
    t_day_num = len(result)
    base_delta = result[t_day_num - 1][1] / result[0][1]
    policy_delta = result[t_day_num - 1][2] / result[0][2]

    print "%s ~ %s, %d个交易日,交易%d笔,交易成本%f,基准表现%f,策略表现%f" % (
        result[0][0], result[t_day_num - 1][0], t_day_num, trans_num,
        trans_cost, base_delta, policy_delta)
Пример #4
0
def load_md_his(filepath ,dbcur, inventory_ranges ):
    the_file = io.open( filepath, "r", encoding='utf-8')
    reader = csv.DictReader( the_file, dialect = 'excel-tab')
    #reader = csv.reader( the_file, dialect = 'excel-tab')

    row_num = 0
            
    info = data_struct.SecurityInfo( ) 
    info.parse_from_filepath( filepath )
    the_code = info.code
    #info.dump()
    db_operator.save_sec_info_to_db(dbcur, info)

    if the_code in  inventory_ranges:
        the_range = inventory_ranges[the_code]
    else:
        the_range = None
    #print the_range

    for row in reader:
        row_num +=1

        if 1== row_num:
            verify_his_csv_format(filepath, row ) 
            
        #s = str(row).decode('string_escape').decode('utf8')  #  能显示 DectReader吐的中文
        #s = row[0].decode('utf8')    #<= OK,能显示 plain reader 吐的
        #.decode('string_escape')
        #print s
        #pdb.set_trace()

        md_record =  data_struct.MdRecord()
        md_record.code = the_code 
        md_record.load_from_his_csv_row( row)
        #md_record.dump()

        if the_range is not None \
            and md_record.t_day >= the_range.start \
            and md_record.t_day <= the_range.end :
                continue

        db_operator.save_MD_to_db( dbcur, md_record)

    print "%s was imported" % filepath
    the_file.close()
Пример #5
0
def get_sec_info(dbcur):
    dbcur.execute('''
        select code, name, dir 
        from SecurityInfo 
        ''')
    r = {}

    row = dbcur.fetchone()
    while row is not None:
        one_entry = data_struct.SecurityInfo()
        one_entry.code = row[0]
        one_entry.name = row[1]
        one_entry.dirpath = row[2]

        r[row[0]] = one_entry

        row = dbcur.fetchone()

    return r
Пример #6
0
def load_daily_md(filepath, yyyymmdd, dbcur, inventory_ranges ):
    with  io.open( filepath, "r", encoding='utf-8') as the_file:
        reader = csv.DictReader( the_file, dialect = 'excel-tab')
        
        sec_info = db_operator.get_sec_info(dbcur)
        
        row_num = 0
        
        for row in reader:
            row_num +=1

            if 1== row_num:
                verify_daily_csv_format(filepath, row ) 
        
            md_record = data_struct.MdRecord()
            r = md_record.load_from_daily_csv_row( filepath, row, yyyymmdd)

            if  not r:
                continue
            
            # 如果某证券从未由‘历史’文件倒入过,那么不会在SecurityInfo里有记录,所以
            # 不能  if  md_record.code  not in  inventory_ranges: xxxx
            #

            if md_record not in sec_info:
                info = data_struct.SecurityInfo( )
                info.code = md_record.code 
                info.name = md_record.name 
                #info.dump()
                db_operator.save_sec_info_to_db_if_not_exists(dbcur, info)

            db_operator.save_MD_to_db( dbcur, md_record)
   
    dbcur.connection.commit()
    
    print "%s was imported" % filepath