Пример #1
0
def denormalize_and_convert_to_euler( data, data_mean, data_std, dim_to_ignore, actions, one_hot ):
  """
  Denormalizes data and converts to Euler angles
  (all losses are computed on Euler angles).

  Args
    data: dictionary with human poses.
    data_mean: d-long vector with the mean of the training data.
    data_std: d-long vector with the standard deviation of the training data.
    dim_to_ignore: dimensions to ignore because the std is too small or for other reasons.
    actions: list of strings with the actions in the data dictionary.
    one_hot: whether the data comes with one-hot encoding.

  Returns
    all_denormed: a list with nbatch entries. Each entry is an n-by-d matrix
                  that corresponds to a denormalized sequence in Euler angles
  """

  all_denormed = []

  # expmap -> rotmat -> euler
  for i in np.arange( data.shape[0] ):
    denormed = data_utils.unNormalizeData(data[i,:,:], data_mean, data_std, dim_to_ignore, actions, one_hot )

    for j in np.arange( denormed.shape[0] ):
      for k in np.arange(3,115,3):
        denormed[j,k:k+3] = data_utils.rotmat2euler( data_utils.expmap2rotmat( denormed[j,k:k+3] ))

    all_denormed.append( denormed )

  return all_denormed
    def compute_test_error(self, action, pred_pose, srnn_gts_expmap, srnn_gts_euler, one_hot, samples_fname):
        """
        Compute the test error
        """

        pred_pose = np.squeeze(pred_pose)
        predict_expmap = data_utils_cmu.revert_output_format(pred_pose, self.data_mean, self.data_std,
                                                         self.dim_to_ignore,
                                                         self.actions, one_hot)

        mean_errors = np.zeros((len(predict_expmap), predict_expmap[0].shape[0]))

        for i in np.arange(8):

            eulerchannels_pred = np.copy(predict_expmap[i])
            for j in np.arange(eulerchannels_pred.shape[0]):
                for k in np.arange(0, 115, 3):
                    idx = [k, k + 1, k + 2]
                    eulerchannels_pred[j, idx] = data_utils_cmu.rotmat2euler(
                        data_utils_cmu.expmap2rotmat(predict_expmap[i][j, idx]))

            eulerchannels_pred[:, 0:6] = 0
            srnn_gts_euler[action][i][:, 0:6] = 0
            idx_to_use = np.where(np.std(srnn_gts_euler[action][i], 0) > 1e-4)[0]


            euc_error = np.power(srnn_gts_euler[action][i][50:, idx_to_use] - eulerchannels_pred[:, idx_to_use], 2)
            euc_error = np.sum(euc_error, 1)
            euc_error = np.sqrt(euc_error)
            mean_errors[i, :] = euc_error

        mean_mean_errors = np.mean(mean_errors, 0)

        print()
        print(action)
        print()
        print("{0: <16} |".format("milliseconds"), end="")
        for ms in [80, 160, 320, 400, 560, 1000]:
            print(" {0:5d} |".format(ms), end="")
        print()

        print("{0: <16} |".format(action), end="")
        for ms in [1, 3, 7, 9, 13, 24]:
            if self.seq_length_out >= ms + 1:
                print(" {0:.3f} |".format(mean_mean_errors[ms]), end="")
            else:
                print("   n/a |", end="")
        print()

        with h5py.File(samples_fname, 'a') as hf:
            for i in np.arange(8):
                node_name = 'expmap/gt/{1}_{0}'.format(i, action)
                hf.create_dataset(node_name, data=srnn_gts_expmap[action][i])
                node_name = 'expmap/preds/{1}_{0}'.format(i, action)
                hf.create_dataset(node_name, data=predict_expmap[i])
            node_name = 'mean_{0}_error'.format(action)
            hf.create_dataset(node_name, data=mean_mean_errors)
Пример #3
0
def get_srnn_gts(actions,
                 model,
                 test_set,
                 data_mean,
                 data_std,
                 dim_to_ignore,
                 one_hot,
                 to_euler=True):
    """
  Get the ground truths for srnn's sequences, and convert to Euler angles.
  (the error is always computed in Euler angles).

  Args
    actions: a list of actions to get ground truths for.
    model: training model we are using (we only use the "get_batch" method).
    test_set: dictionary with normalized training data.
    data_mean: d-long vector with the mean of the training data.
    data_std: d-long vector with the standard deviation of the training data.
    dim_to_ignore: dimensions that we are not using to train/predict.
    one_hot: whether the data comes with one-hot encoding indicating action.
    to_euler: whether to convert the angles to Euler format or keep thm in exponential map

  Returns
    srnn_gts_euler: a dictionary where the keys are actions, and the values
      are the ground_truth, denormalized expected outputs of srnns's seeds.
  """
    srnn_gts_euler = {}

    for action in actions:

        srnn_gt_euler = []
        _, _, srnn_expmap = model.get_batch_srnn(test_set, action)
        # print(srnn_expmap.shape)
        # expmap -> rotmat -> euler
        for i in np.arange(srnn_expmap.shape[0]):
            denormed = data_utils.unNormalizeData(srnn_expmap[i, :, :],
                                                  data_mean, data_std,
                                                  dim_to_ignore, actions,
                                                  one_hot)

            if to_euler:
                for j in np.arange(denormed.shape[0]):
                    for k in np.arange(3, 115, 3):
                        denormed[j, k:k + 3] = data_utils.rotmat2euler(
                            data_utils.expmap2rotmat(denormed[j, k:k + 3]))

            srnn_gt_euler.append(denormed)

        # Put back in the dictionary
        srnn_gts_euler[action] = srnn_gt_euler

    return srnn_gts_euler
Пример #4
0
def sample():
    """Sample predictions for srnn's seeds"""

    if FLAGS.load <= 0:
        raise (ValueError, "Must give an iteration to read parameters from")

    actions = define_actions(FLAGS.action)

    # Use the CPU if asked to
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:

        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.size))
        sampling = True
        model = create_model(sess, actions, sampling)
        print("Model created")

        # Load all the data
        train_set, test_set, data_mean, data_std, dim_to_ignore, dim_to_use = read_all_data(
            actions, FLAGS.seq_length_in, FLAGS.seq_length_out, FLAGS.data_dir,
            not FLAGS.omit_one_hot)

        # === Read and denormalize the gt with srnn's seeds, as we'll need them
        # many times for evaluation in Euler Angles ===
        srnn_gts_expmap = get_srnn_gts_sample(actions,
                                              model,
                                              test_set,
                                              data_mean,
                                              data_std,
                                              dim_to_ignore,
                                              not FLAGS.omit_one_hot,
                                              to_euler=False)
        srnn_gts_euler = get_srnn_gts(actions, model, test_set, data_mean,
                                      data_std, dim_to_ignore,
                                      not FLAGS.omit_one_hot)

        # Clean and create a new h5 file of samples
        SAMPLES_FNAME = 'samples.h5'
        try:
            os.remove(SAMPLES_FNAME)
        except OSError:
            pass

        # Predict and save for each action
        for action in actions:

            # Make prediction with srnn' seeds
            encoder_inputs, decoder_inputs, decoder_outputs = model.get_batch_srnn(
                test_set, action)
            forward_only = True
            srnn_seeds = True
            srnn_loss, srnn_poses, _, spatial_weight = model.step(
                sess, encoder_inputs, decoder_inputs, decoder_outputs,
                forward_only, srnn_seeds)

            # denormalizes too
            srnn_pred_expmap = data_utils.revert_output_format(
                srnn_poses, data_mean, data_std, dim_to_ignore, actions,
                not FLAGS.omit_one_hot)

            # Save the conditioning seeds

            # Save the samples
            with h5py.File(SAMPLES_FNAME, 'a') as hf:
                for i in np.arange(8):
                    # Save conditioning ground truth
                    node_name = 'expmap/gt/{1}_{0}'.format(i, action)
                    hf.create_dataset(node_name,
                                      data=srnn_gts_expmap[action][i])
                    # Save prediction
                    node_name = 'expmap/preds/{1}_{0}'.format(i, action)
                    hf.create_dataset(node_name, data=srnn_pred_expmap[i])

            # Compute and save the errors here
            mean_errors = np.zeros(
                (len(srnn_pred_expmap), srnn_pred_expmap[0].shape[0]))

            for i in np.arange(8):

                eulerchannels_pred = srnn_pred_expmap[i]

                for j in np.arange(eulerchannels_pred.shape[0]):
                    for k in np.arange(3, 115, 3):
                        eulerchannels_pred[j,
                                           k:k + 3] = data_utils.rotmat2euler(
                                               data_utils.expmap2rotmat(
                                                   eulerchannels_pred[j, k:k +
                                                                      3]))

                eulerchannels_pred[:, 0:6] = 0

                # Pick only the dimensions with sufficient standard deviation. Others are ignored.
                idx_to_use = np.where(np.std(eulerchannels_pred, 0) > 1e-4)[0]

                euc_error = np.power(
                    srnn_gts_euler[action][i][:, idx_to_use] -
                    eulerchannels_pred[:, idx_to_use], 2)
                euc_error = np.sum(euc_error, 1)
                euc_error = np.sqrt(euc_error)
                mean_errors[i, :] = euc_error

            mean_mean_errors = np.mean(mean_errors, 0)
            print(action)
            print(','.join(map(str, mean_mean_errors.tolist())))

            with h5py.File(SAMPLES_FNAME, 'a') as hf:
                node_name = 'mean_{0}_error'.format(action)
                hf.create_dataset(node_name, data=mean_mean_errors)
    return
Пример #5
0
def train():
    """Train a seq2seq model on human motion"""

    actions = define_actions(FLAGS.action)

    number_of_actions = len(actions)

    train_set, test_set, data_mean, data_std, dim_to_ignore, dim_to_use = read_all_data(
        actions, FLAGS.seq_length_in, FLAGS.seq_length_out, FLAGS.data_dir,
        not FLAGS.omit_one_hot)

    # Limit TF to take a fraction of the GPU memory
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1)
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                          device_count=device_count)) as sess:

        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.size))

        model = create_model(sess, actions)
        model.train_writer.add_graph(sess.graph)
        print("Model created")

        # === Read and denormalize the gt with srnn's seeds, as we'll need them
        # many times for evaluation in Euler Angles ===
        srnn_gts_euler = get_srnn_gts(actions, model, test_set, data_mean,
                                      data_std, dim_to_ignore,
                                      not FLAGS.omit_one_hot)

        #=== This is the training loop ===
        step_time, loss, val_loss = 0.0, 0.0, 0.0
        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
        previous_losses = []

        step_time, loss = 0, 0

        # Init Validation variable for the whole model
        minimized_error = 0.0
        recorded_step = 0

        for _ in xrange(FLAGS.iterations):

            start_time = time.time()

            # === Training step ===
            encoder_inputs, decoder_inputs, decoder_outputs = model.get_batch(
                train_set, not FLAGS.omit_one_hot)
            _, step_loss, loss_summary, lr_summary, main_loss = model.step(
                sess, encoder_inputs, decoder_inputs, decoder_outputs, False)

            model.train_writer.add_summary(loss_summary, current_step)
            model.train_writer.add_summary(lr_summary, current_step)

            if current_step % 10 == 0:
                print("step {0:04d}; step_loss: {1:.4f}".format(
                    current_step, step_loss))

            step_time += (time.time() - start_time) / FLAGS.test_every
            loss += step_loss / FLAGS.test_every
            current_step += 1

            # === step decay ===
            if current_step % FLAGS.learning_rate_step == 0:
                sess.run(model.learning_rate_decay_op)
            if current_step % FLAGS.loss_weight_step == 0:
                sess.run(model.sub_loss_weight_decay_op)

            # Once in a while, we save checkpoint, print statistics, and run evals.
            if current_step % FLAGS.test_every == 0:

                # === Validation with randomly chosen seeds ===
                forward_only = True

                encoder_inputs, decoder_inputs, decoder_outputs = model.get_batch(
                    test_set, not FLAGS.omit_one_hot)
                step_loss, loss_summary = model.step(sess, encoder_inputs,
                                                     decoder_inputs,
                                                     decoder_outputs,
                                                     forward_only)

                val_loss = step_loss  # Loss book-keeping

                model.test_writer.add_summary(loss_summary, current_step)

                print()
                print("{0: <16} |".format("milliseconds"), end="")
                for ms in [80, 160, 320, 400, 1000]:
                    print(" {0:5d} |".format(ms), end="")
                print()

                # Init the variable for accmulated error
                accumulated_error = 0.0
                mean_mean_errors_avg = {}
                for i in range(0, 25):
                    mean_mean_errors_avg[i] = 0

                # === Validation with srnn's seeds ===
                for action in actions:

                    # Evaluate the model on the test batches
                    encoder_inputs, decoder_inputs, decoder_outputs = model.get_batch_srnn(
                        test_set, action)
                    srnn_loss, srnn_poses, _ = model.step(
                        sess, encoder_inputs, decoder_inputs, decoder_outputs,
                        True, True)

                    # Denormalize the output
                    srnn_pred_expmap = data_utils.revert_output_format(
                        srnn_poses, data_mean, data_std, dim_to_ignore,
                        actions, not FLAGS.omit_one_hot)

                    # Save the errors here
                    mean_errors = np.zeros(
                        (len(srnn_pred_expmap), srnn_pred_expmap[0].shape[0]))

                    # Training is done in exponential map, but the error is reported in
                    # Euler angles, as in previous work.
                    # See https://github.com/asheshjain399/RNNexp/issues/6#issuecomment-247769197
                    N_SEQUENCE_TEST = 8
                    for i in np.arange(N_SEQUENCE_TEST):
                        eulerchannels_pred = srnn_pred_expmap[i]

                        # Convert from exponential map to Euler angles
                        for j in np.arange(eulerchannels_pred.shape[0]):
                            for k in np.arange(3, 115, 3):
                                eulerchannels_pred[
                                    j, k:k + 3] = data_utils.rotmat2euler(
                                        data_utils.expmap2rotmat(
                                            eulerchannels_pred[j, k:k + 3]))

                        # The global translation (first 3 entries) and global rotation
                        # (next 3 entries) are also not considered in the error, so the_key
                        # are set to zero.
                        # See https://github.com/asheshjain399/RNNexp/issues/6#issuecomment-249404882
                        gt_i = np.copy(srnn_gts_euler[action][i])
                        gt_i[:, 0:6] = 0

                        # Now compute the l2 error.
                        idx_to_use = np.where(np.std(gt_i, 0) > 1e-4)[0]

                        euc_error = np.power(
                            gt_i[:, idx_to_use] -
                            eulerchannels_pred[:, idx_to_use], 2)
                        euc_error = np.sum(euc_error, 1)
                        euc_error = np.sqrt(euc_error)
                        mean_errors[i, :] = euc_error

                    # This is simply the mean error over the N_SEQUENCE_TEST examples
                    mean_mean_errors = np.mean(mean_errors, 0)
                    accumulated_error += np.mean(mean_mean_errors)

                    for ms in range(0, 25):
                        mean_mean_errors_avg[ms] += mean_mean_errors[ms]

                    # Pretty print of the results for 80, 160, 320, 400, 560 and 1000 ms
                    print("{0: <16} |".format(action), end="")
                    for ms in [1, 3, 7, 9, 24]:
                        if FLAGS.seq_length_out >= ms + 1:
                            print(" {0:.3f} |".format(mean_mean_errors[ms]),
                                  end="")
                            # mean_mean_errors_avg[ms] += mean_mean_errors[ms]
                        else:
                            print("   n/a |", end="")
                    print()

                for i in range(0, FLAGS.seq_length_out):
                    mean_mean_errors_avg[
                        i] = mean_mean_errors_avg[i] / number_of_actions

                # Pretty print of the average results for 80, 160, 320, 400, 560 and 1000 ms
                print("{0: <16} |".format("average"), end="")
                for ms in [1, 3, 7, 9, 24]:
                    if FLAGS.seq_length_out >= ms + 1:
                        print(" {0:.3f} |".format(mean_mean_errors_avg[ms]),
                              end="")
                    else:
                        print("   n/a |", end="")
                print()

                print()
                print("============================\n"
                      "Global step:         %d\n"
                      "Learning rate:       %.4f\n"
                      "Step-time (ms):     %.4f\n"
                      "Train loss avg:      %.4f\n"
                      "--------------------------\n"
                      "Val loss:            %.4f\n"
                      "srnn loss:           %.4f\n"
                      "============================" %
                      (model.global_step.eval(), model.learning_rate.eval(),
                       step_time * 1000, loss, val_loss, srnn_loss))
                print()

                # Update minimized_error and recorded step
                if (accumulated_error < minimized_error) or (minimized_error
                                                             == 0.0):
                    minimized_error = accumulated_error
                    recorded_step = model.global_step.eval()
                    print("Updated Error:{0}, step:{1}".format(
                        minimized_error, recorded_step))

                    # Save the model
                    if current_step % FLAGS.save_every == 0:
                        print("Saving the model...")
                        start_time = time.time()
                        model.saver.save(sess,
                                         os.path.normpath(
                                             os.path.join(
                                                 train_dir, 'checkpoint')),
                                         global_step=current_step)
                        print("done in {0:.2f} ms".format(
                            (time.time() - start_time) * 1000))

                else:
                    print("Error:{0}".format(accumulated_error))

                previous_losses.append(loss)

                # Reset global time and loss
                step_time, loss = 0, 0

                sys.stdout.flush()

        print()
        print("Minimized_error:{0}, on step:{1}".format(
            minimized_error, recorded_step))
        return minimized_error, recorded_step