Пример #1
0
    def setUpClass(cls) -> None:
        """Create the expected schema in the test database"""

        drop_all_user_databases()
        database_name = "constraints_database"
        schema_name = "dbo"
        query_list = list(create_database(database_name, "Latin1_General_CS_AS"))
        query_list.extend(enable_database_tracking(database_name))

        table_name = "no_constraints"
        cls.EXPECTED_METADATA = {
            '{}_{}_{}'.format(database_name, schema_name, table_name): {
                'is-view': False,
                'schema-name': schema_name,
                'row-count': 0,
                'values': [(0, ), (1, ), (2, )],
                'table-key-properties': set(),
                'selected': None,
                'database-name': database_name,
                'stream_name': table_name,
                'fields': [
                    {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True,
                                               'inclusion': 'available'}}],
                'schema': {
                    'type': 'object',
                    'properties': {
                        'replication_key_column': {
                            'type': ['integer', 'null'],
                            'minimum': -2147483648,
                            'maximum': 2147483647,
                            'inclusion': 'available',
                            'selected': True}},
                    'selected': True}},
            }

        column_name = ["replication_key_column"]
        column_type = ["int"]
        primary_key = set()
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(database_name, schema_name, table_name, column_def,
                                       primary_key=primary_key))
        query_list.extend(insert(database_name, schema_name, table_name,
                                 cls.EXPECTED_METADATA['{}_{}_{}'.format(
                                     database_name, schema_name, table_name)]["values"]))

        table_name = "multiple_column_pk"
        primary_key = ["first_name", "last_name"]
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
            'is-view': False,
            'schema-name': schema_name,
            'row-count': 0,
            'values': [
                ("Tim", "Berners-Lee", 64),
                ("Sergey", "Brin", 45),
                ("Larry", "Page", 46)],
            'table-key-properties': primary_key,
            'selected': None,
            'database-name': database_name,
            'stream_name': table_name,
            'fields': [
                    {'first_name': {'sql-datatype': 'varchar', 'selected-by-default': True, 'inclusion': 'automatic'}},
                    {'last_name': {'sql-datatype': 'varchar', 'selected-by-default': True, 'inclusion': 'automatic'}},
                    {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
            'schema': {
                'type': 'object',
                'selected': True,
                'properties': {
                    'replication_key_column': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648},
                    'first_name': {
                        'type': ['string'],
                        'maxLength': 256,
                        'inclusion': 'automatic',
                        'selected': True},  # 'minLength': 0},
                    'last_name': {
                        'type': ['string'],
                        'maxLength': 256,
                        'inclusion': 'automatic',
                        'selected': True}  # 'minLength': 0},(1, 4, 2, 5)
                    }}
        }
        column_name = ["first_name", "last_name", "replication_key_column"]
        column_type = ["varchar(256)", "varchar(256)", "int"]
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(database_name, schema_name, table_name, column_def,
                                       primary_key=primary_key, tracking=True) )
        query_list.extend(insert(database_name, schema_name, table_name,
                                 cls.EXPECTED_METADATA['{}_{}_{}'.format(
                                     database_name, schema_name, table_name)]["values"]))

        # Already covered in other tests
        # table_name = "single_column_pk"
        # primary_key = ["pk"]
        # cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
        #     'is-view': False,
        #     'schema-name': schema_name,
        #     'row-count': 0,
        #     'values': [
        #         (0, 3),
        #         (1, 4),
        #         (2, 5)],
        #     'table-key-properties': primary_key,
        #     'selected': None,
        #     'database-name': database_name,
        #     'stream_name': table_name,
        #     'fields': [
        #         {'pk': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
        #         {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
        #     'schema': {
        #         'type': 'object',
        #         'selected': True,
        #         'properties': {
        #             'pk': {
        #                 'maximum': 2147483647,
        #                 'type': ['integer'],
        #                 'inclusion': 'automatic',
        #                 'selected': True,
        #                 'minimum': -2147483648},
        #             'replication_key_column': {
        #                 'maximum': 2147483647,
        #                 'type': ['integer', 'null'],
        #                 'inclusion': 'available',
        #                 'selected': True,
        #                 'minimum': -2147483648},
        #             "_sdc_deleted_at": {'format': 'date-time', 'type': 'string'}}}
        # }
        # column_name = ["pk", "data"]
        # column_type = ["int", "int"]
        # column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        # query_list.extend(create_table(database_name, schema_name, table_name, column_def,
        #                                primary_key=primary_key, tracking=True))
        # query_list.extend(insert(database_name, schema_name, table_name,
        #                          cls.EXPECTED_METADATA['{}_{}_{}'.format(
        #                              database_name, schema_name, table_name)]["values"]))

        table_name = "pk_with_unique_not_null"
        primary_key = ["pk"]
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
            'is-view': False,
            'schema-name': schema_name,
            'row-count': 0,
            'values': [
                (0, 3),
                (1, 4),
                (2, 5)],
            'table-key-properties': primary_key,
            'selected': None,
            'database-name': database_name,
            'stream_name': table_name,
            'fields': [
                {'pk': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
                {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
            'schema': {
                'type': 'object',
                'selected': True,
                'properties': {
                    'pk': {
                        'maximum': 2147483647,
                        'type': ['integer'],
                        'inclusion': 'automatic',
                        'selected': True,
                        'minimum': -2147483648},
                    'replication_key_column': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648}}}
        }
        column_name = ["pk", "replication_key_column"]
        column_type = ["int", "int NOT NULL UNIQUE"]
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(database_name, schema_name, table_name, column_def,
                                       primary_key=primary_key, tracking=True) )
        query_list.extend(insert(database_name, schema_name, table_name,
                                 cls.EXPECTED_METADATA['{}_{}_{}'.format(
                                     database_name, schema_name, table_name)]["values"]))

        table_name = "pk_with_fk"
        primary_key = ["pk"]
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
            'is-view': False,
            'schema-name': schema_name,
            'row-count': 0,
            'values': [
                (3, 1),
                (1, 0),
                (2, 0),
                (0, 1),
                (4, None)],
            'table-key-properties': primary_key,
            'selected': None,
            'database-name': database_name,
            'stream_name': table_name,
            'fields': [
                {'pk': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
                {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
            'schema': {
                'type': 'object',
                'selected': True,
                'properties': {
                    'pk': {
                        'maximum': 2147483647,
                        'type': ['integer'],
                        'inclusion': 'automatic',
                        'selected': True,
                        'minimum': -2147483648},
                    'replication_key_column': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648}}}
        }
        column_name = ["pk", "replication_key_column"]
        column_type = ["int", "int"]
        foreign_key = "replication_key_column"
        reference = "{}.pk_with_unique_not_null(pk)".format(schema_name)
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(
            database_name, schema_name, table_name, column_def,
            primary_key=primary_key, foreign_key=foreign_key, reference=reference, tracking=True))
        query_list.extend(insert(database_name, schema_name, table_name,
                                 cls.EXPECTED_METADATA['{}_{}_{}'.format(
                                     database_name, schema_name, table_name)]["values"]))

        table_name = "view_with_join"
        primary_key = []
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
            'is-view': True,
            'schema-name': schema_name,
            'row-count': 0,
            'values': [
                (1, 4, 0),
                (0, 3, 1),
                (0, 3, 2),
                (1, 4, 3),
                (None, None, 4)],
            'table-key-properties': primary_key,
            'selected': None,
            'database-name': database_name,
            'stream_name': table_name,
            'fields': [
                {'column1': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}},
                {'data': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}},
                {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
            'schema': {
                'type': 'object',
                'selected': True,
                'properties': {
                    'column1': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648},
                    'data': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648},
                    'replication_key_column': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648}}}
        }
        select = ("SELECT p.pk as column1, p.replication_key_column as data, f.pk as replication_key_column "
                  "FROM pk_with_unique_not_null p "
                  "RIGHT JOIN pk_with_fk f on p.pk = f.replication_key_column")
        query_list.extend(create_view(schema_name, table_name, select))

        # This doesn't look to add value
        # table_name = "table_with_index"
        # primary_key = []
        # cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
        #     'is-view': False,
        #     'schema-name': schema_name,
        #     'row-count': 0,
        #     'values': [
        #         (0, 3),
        #         (1, 4)],
        #     'table-key-properties': primary_key,
        #     'selected': None,
        #     'database-name': database_name,
        #     'stream_name': table_name,
        #     'fields': [
        #         {'not_pk': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}},
        #         {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
        #     'schema': {
        #         'type': 'object',
        #         'selected': True,
        #         'properties': {
        #             'not_pk': {
        #                 'maximum': 2147483647,
        #                 'type': ['integer', 'null'],
        #                 'inclusion': 'available',
        #                 'selected': True,
        #                 'minimum': -2147483648},
        #             'replication_key_column': {
        #                 'maximum': 2147483647,
        #                 'type': ['integer', 'null'],
        #                 'inclusion': 'available',
        #                 'selected': True,
        #                 'minimum': -2147483648}}}
        # }
        # column_name = ["not_pk", "replication_key_column"]
        # column_type = ["int", "int NOT NULL INDEX myindex"]
        # column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        # query_list.extend(create_table(database_name, schema_name, table_name, column_def,
        #                                primary_key=primary_key))
        # query_list.extend(insert(database_name, schema_name, table_name,
        #                          cls.EXPECTED_METADATA['{}_{}_{}'.format(
        #                              database_name, schema_name, table_name)]["values"]))

        table_name = "default_column"
        primary_key = ["pk"]
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
            'is-view': False,
            'schema-name': schema_name,
            'row-count': 0,
            'values': [
                (0, ),
                (1, )],
            'table-key-properties': primary_key,
            'selected': None,
            'database-name': database_name,
            'stream_name': table_name,
            'fields': [
                {'pk': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
                {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
            'schema': {
                'type': 'object',
                'selected': True,
                'properties': {
                    'pk': {
                        'maximum': 2147483647,
                        'type': ['integer'],
                        'inclusion': 'automatic',
                        'selected': True,
                        'minimum': -2147483648},
                    'replication_key_column': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648}}}
        }
        column_name = ["pk", "replication_key_column"]
        column_type = ["int", "int DEFAULT -1"]
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(
            database_name, schema_name, table_name, column_def, primary_key=primary_key, tracking=True) )
        query_list.extend(insert(database_name, schema_name, table_name,
                                 cls.EXPECTED_METADATA['{}_{}_{}'.format(
                                     database_name, schema_name, table_name)]["values"],
                                 column_names=["pk"]))
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)]["values"] = [
                (0, -1),
                (1, -1)]

        table_name = "check_constraint"
        primary_key = ["pk"]
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
            'is-view': False,
            'schema-name': schema_name,
            'row-count': 0,
            'values': [
                (0, 37),
                (1, 34)],
            'table-key-properties': primary_key,
            'selected': None,
            'database-name': database_name,
            'stream_name': table_name,
            'fields': [
                {'pk': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
                {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
            'schema': {
                'type': 'object',
                'selected': True,
                'properties': {
                    'pk': {
                        'maximum': 2147483647,
                        'type': ['integer'],
                        'inclusion': 'automatic',
                        'selected': True,
                        'minimum': -2147483648},
                    'replication_key_column': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648}}}
        }
        column_name = ["pk", "replication_key_column"]
        column_type = ["int", "int CHECK (replication_key_column <= 120)"]
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(
            database_name, schema_name, table_name, column_def, primary_key=primary_key, tracking=True) )
        query_list.extend(insert(database_name, schema_name, table_name,
                                 cls.EXPECTED_METADATA['{}_{}_{}'.format(
                                     database_name, schema_name, table_name)]["values"]))

        table_name = "even_identity"
        primary_key = ["pk"]
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)] = {
            'is-view': False,
            'schema-name': schema_name,
            'row-count': 0,
            'values': [
                (1, ),
                (2, )],
            'table-key-properties': primary_key,
            'selected': None,
            'database-name': database_name,
            'stream_name': table_name,
            'fields': [
                {'pk': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
                {'replication_key_column': {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'available'}}],
            'schema': {
                'type': 'object',
                'selected': True,
                'properties': {
                    'pk': {
                        'maximum': 2147483647,
                        'type': ['integer'],
                        'inclusion': 'automatic',
                        'selected': True,
                        'minimum': -2147483648},
                    'replication_key_column': {
                        'maximum': 2147483647,
                        'type': ['integer', 'null'],
                        'inclusion': 'available',
                        'selected': True,
                        'minimum': -2147483648}}}
        }
        column_name = ["pk", "replication_key_column"]
        column_type = ["int", "int IDENTITY(2,2)"]
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(
            database_name, schema_name, table_name, column_def, primary_key=primary_key, tracking=True) )
        query_list.extend(insert(database_name, schema_name, table_name,
                                 cls.EXPECTED_METADATA['{}_{}_{}'.format(
                                     database_name, schema_name, table_name)]["values"],
                                 column_names=["pk"]))
        cls.EXPECTED_METADATA['{}_{}_{}'.format(database_name, schema_name, table_name)]["values"] = [
            (1, 2),
            (2, 4)]
        mssql_cursor_context_manager(*query_list)

        cls.expected_metadata = cls.discovery_expected_metadata
Пример #2
0
    def setUpClass(cls) -> None:
        """Create the expected schema in the test database"""

        database_name = "data_types_database"
        schema_name = "dbo"
        drop_all_user_databases()

        values = [
            (0, date(1, 1, 1), datetime(1753, 1, 1, 0, 0, tzinfo=timezone.utc),
             datetime(1, 1, 1, 0, 0, tzinfo=timezone.utc),
             datetime(1, 1, 1, 13, 46,
                      tzinfo=timezone(timedelta(hours=-14))).isoformat(),
             datetime(1900, 1, 1, 0, 0,
                      tzinfo=timezone.utc), time(0, 0, tzinfo=timezone.utc)),
            (1, date(9999, 12, 31),
             datetime(9999, 12, 31, 23, 59, 59, 997000, tzinfo=timezone.utc),
             datetime(9999, 12, 31, 23, 59, 59, 999000, tzinfo=timezone.utc),
             datetime(9999,
                      12,
                      31,
                      10,
                      14,
                      tzinfo=timezone(timedelta(hours=14))).isoformat(),
             datetime(2079, 6, 6, 23, 59, tzinfo=timezone.utc),
             time(23, 59, 59, tzinfo=timezone.utc)),
            (2, None, None, None, None, None, None),
            (3, date(4533, 6, 9),
             datetime(3099, 2, 6, 4, 27, 37, 983000, tzinfo=timezone.utc),
             datetime(9085, 4, 30, 21, 52, 57, 492920, tzinfo=timezone.utc),
             datetime(5749,
                      4,
                      3,
                      1,
                      47,
                      47,
                      110809,
                      tzinfo=timezone(timedelta(hours=10,
                                                minutes=5))).isoformat(),
             datetime(2031, 4, 30, 19, 32, tzinfo=timezone.utc),
             time(21, 9, 56, 0, tzinfo=timezone.utc)),
            (4, date(3476, 10, 14),
             datetime(7491, 4, 5, 8, 46, 0, 360000, tzinfo=timezone.utc),
             datetime(8366, 7, 13, 17, 15, 10, 102386, tzinfo=timezone.utc),
             datetime(2642,
                      6,
                      19,
                      21,
                      10,
                      28,
                      546280,
                      tzinfo=timezone(timedelta(hours=6,
                                                minutes=15))).isoformat(),
             datetime(2024, 6, 22, 0, 36, tzinfo=timezone.utc),
             time(2, 14, 4, 0, tzinfo=timezone.utc))
        ]

        schema = {
            'selected': True,
            'properties': {
                'its_time': {
                    'selected': True,
                    'inclusion': 'available',
                    'type': ['string', 'null']
                },
                'pk': {
                    'maximum': 2147483647,
                    'selected': True,
                    'inclusion': 'automatic',
                    'type': ['integer'],
                    'minimum': -2147483648
                },
                'just_a_date': {
                    'selected': True,
                    'inclusion': 'available',
                    'type': ['string', 'null'],
                    'format': 'date-time'
                },
                'date_and_time': {
                    'selected': True,
                    'inclusion': 'available',
                    'type': ['string', 'null'],
                    'format': 'date-time'
                },
                "bigger_range_and_precision_datetime": {
                    'selected': True,
                    'inclusion': 'available',
                    'type': ['string', 'null'],
                    'format': 'date-time'
                },
                "datetime_with_timezones": {
                    'selected': True,
                    'inclusion': 'available',
                    'type': ['string', 'null'],
                    'format': 'date-time'
                },
                "datetime_no_seconds": {
                    'selected': True,
                    'inclusion': 'available',
                    'type': ['string', 'null'],
                    'format': 'date-time'
                },
                "_sdc_deleted_at": {
                    'format': 'date-time',
                    'type': ['string', 'null']
                }
            },
            'type': 'object'
        }

        feilds = [{
            'pk': {
                'sql-datatype': 'int',
                'selected-by-default': True,
                'inclusion': 'automatic'
            }
        }, {
            'just_a_date': {
                'sql-datatype': 'date',
                'selected-by-default': True,
                'inclusion': 'available'
            }
        }, {
            'date_and_time': {
                'sql-datatype': 'datetime',
                'selected-by-default': True,
                'inclusion': 'available'
            }
        }, {
            'bigger_range_and_precision_datetime': {
                'sql-datatype': 'datetime2',
                'selected-by-default': True,
                'inclusion': 'available'
            }
        }, {
            'datetime_with_timezones': {
                'sql-datatype': 'datetimeoffest',
                'selected-by-default': True,
                'inclusion': 'available'
            }
        }, {
            'datetime_no_seconds': {
                'sql-datatype': 'smalldatetime',
                'selected-by-default': True,
                'inclusion': 'available'
            }
        }, {
            'its_time': {
                'sql-datatype': 'time',
                'selected-by-default': True,
                'inclusion': 'available'
            }
        }]

        query_list = list(
            create_database(database_name, "Latin1_General_CS_AS"))
        query_list.extend(enable_database_tracking(database_name))

        table_name = "dates_and_times"
        primary_key = {"pk"}

        column_name = [
            "pk", "just_a_date", "date_and_time",
            "bigger_range_and_precision_datetime", "datetime_with_timezones",
            "datetime_no_seconds", "its_time"
        ]
        column_type = [
            "int", "date", "datetime", "datetime2", "datetimeoffset",
            "smalldatetime", "time"
        ]

        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        query_list.extend(
            insert(database_name, schema_name, table_name, values))

        mssql_cursor_context_manager(*query_list)

        values = [
            (0, date(1, 1, 1), datetime(1753, 1, 1, 0, 0, tzinfo=timezone.utc),
             datetime(1, 1, 1, 0, 0, tzinfo=timezone.utc),
             datetime(1, 1, 1, 13, 46, tzinfo=timezone(
                 timedelta(hours=-14))).astimezone(timezone.utc),
             datetime(1900, 1, 1, 0, 0,
                      tzinfo=timezone.utc), time(0, 0, tzinfo=timezone.utc)),
            (1, date(9999, 12, 31),
             datetime(9999, 12, 31, 23, 59, 59, 997000, tzinfo=timezone.utc),
             datetime(9999, 12, 31, 23, 59, 59, 999000, tzinfo=timezone.utc),
             datetime(9999,
                      12,
                      31,
                      10,
                      14,
                      tzinfo=timezone(timedelta(hours=14))).astimezone(
                          timezone.utc),
             datetime(2079, 6, 6, 23, 59, tzinfo=timezone.utc),
             time(23, 59, 59, tzinfo=timezone.utc)),
            (2, None, None, None, None, None, None),
            (3, date(4533, 6, 9),
             datetime(3099, 2, 6, 4, 27, 37, 983000, tzinfo=timezone.utc),
             datetime(9085, 4, 30, 21, 52, 57, 492920, tzinfo=timezone.utc),
             datetime(5749,
                      4,
                      3,
                      1,
                      47,
                      47,
                      110809,
                      tzinfo=timezone(timedelta(
                          hours=10, minutes=5))).astimezone(timezone.utc),
             datetime(2031, 4, 30, 19, 32, tzinfo=timezone.utc),
             time(21, 9, 56, 0, tzinfo=timezone.utc)),
            (4, date(3476, 10, 14),
             datetime(7491, 4, 5, 8, 46, 0, 360000, tzinfo=timezone.utc),
             datetime(8366, 7, 13, 17, 15, 10, 102386, tzinfo=timezone.utc),
             datetime(2642,
                      6,
                      19,
                      21,
                      10,
                      28,
                      546280,
                      tzinfo=timezone(timedelta(
                          hours=6, minutes=15))).astimezone(timezone.utc),
             datetime(2024, 6, 22, 0, 36, tzinfo=timezone.utc),
             time(2, 14, 4, 0, tzinfo=timezone.utc))
        ]
        cls.EXPECTED_METADATA = {
            '{}_{}_{}'.format(database_name, schema_name, table_name): {
                'is-view': False,
                'schema-name': schema_name,
                'row-count': 0,
                'values': values,
                'table-key-properties': primary_key,
                'selected': None,
                'database-name': database_name,
                'stream_name': table_name,
                'fields': feilds,
                'schema': schema
            }
        }
        cls.expected_metadata = cls.discovery_expected_metadata
Пример #3
0
    def setUpClass(cls) -> None:
        """Create the expected schema in the test database"""

        drop_all_user_databases()
        database_name = "data_types_database"
        schema_name = "dbo"

        query_list = list(create_database(database_name, "Latin1_General_CS_AS"))
        query_list.extend(enable_database_tracking(database_name))

        text_values = [
            (0, None, None, None),
            (1, "abc", "def", "ghi".encode('utf-8'))
        ]
        text_schema = {
            'selected': True,
            'properties': {
                'pk': {
                    'inclusion': 'automatic',
                    'maximum': 2147483647,
                    'minimum': -2147483648,
                    'type': ['integer'],
                    'selected': True},
                'rowversion_synonym_timestamp': {'inclusion': 'available', 'selected': True, 'type': ['string', 'null']},
                'varchar_text': {},
                'nvarchar_text': {},
                'varbinary_data': {},
                "_sdc_deleted_at": {'format': 'date-time', 'type': ['string', 'null']}},
            'type': 'object'}

        other_values = [
            (0, None, None, None, "827376B0-AEF4-11E9-8002-0800276BC1DF", None, None, None),
            (1, None, None, None, "ACC9A986-AEF4-11E9-8002-0800276BC1DF", None, None, None),
            (2, None, None, None, "B792681C-AEF4-11E9-8002-0800276BC1DF", None, None, None)
        ]
        other_schema = {
            'selected': True,
            'properties': {
                'markup': {},
                'variant': {},
                'geospacial': {},
                'SpecialPurposeColumns': {},
                'tree': {},
                'guid': {
                    'inclusion': 'available',
                    'selected': True,
                    'pattern': '[A-F0-9]{8}-([A-F0-9]{4}-){3}[A-F0-9]{12}',
                    'type': ['string', 'null']},
                'geospacial_map': {},
                'pk': {
                    'inclusion': 'automatic',
                    'maximum': 2147483647,
                    'minimum': -2147483648,
                    'type': ['integer'],
                    'selected': True},
                'version': {'inclusion': 'available', 'selected': True, 'type': ['string', 'null']},
                "_sdc_deleted_at": {'format': 'date-time', 'type': ['string', 'null']}},
            'type': 'object'}

        comp_values = [
            (0, datetime(1970, 7, 8, 3), datetime.now()),
            (1, datetime(1970, 1, 1, 0), datetime.now())
        ]
        comp_schema = {
            'selected': True,
            'properties': {
                'started_at': {
                    'selected': False,
                    'type': ['string', 'null'],
                    'inclusion': 'available',
                    'format': 'date-time'},
                'durations_days': {
                    'inclusion': 'available',
                    'maximum': 2147483647,
                    'minimum': -2147483648,
                    'type': ['integer', 'null'],
                    'selected': True},
                'ended_at': {
                    'format': 'date-time',
                    'inclusion': 'available',
                    'type': ['string', 'null'],
                    'selected': False},
                'pk': {
                    'inclusion': 'automatic',
                    'maximum': 2147483647,
                    'minimum': -2147483648,
                    'type': ['integer'],
                    'selected': True},
                "_sdc_deleted_at": {'format': 'date-time', 'type': ['string', 'null']}},
            'type': 'object'}

        cls.EXPECTED_METADATA = {
            'data_types_database_dbo_text_and_image_deprecated_soon': {
                'is-view': False,
                'schema-name': schema_name,
                'row-count': 0,
                'values': text_values,
                'table-key-properties': {'pk'},
                'selected': None,
                'database-name': database_name,
                'stream_name': 'text_and_image_deprecated_soon',
                'fields': [
                    {"pk": {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
                    {"nvarchar_text": {'sql-datatype': 'ntext', 'selected-by-default': False,
                                       'inclusion': 'unavailable'}},
                    {"varchar_text": {'sql-datatype': 'text', 'selected-by-default': False,
                                      'inclusion': 'unavailable'}},
                    {"varbinary_data": {'sql-datatype': 'image', 'selected-by-default': False,
                                        'inclusion': 'unavailable'}},
                    {"rowversion_synonym_timestamp": {'sql-datatype': 'timestamp', 'selected-by-default': True,
                                                      'inclusion': 'available'}}],
                'schema': text_schema},
            'data_types_database_dbo_weirdos': {
                'is-view': False,
                'schema-name': schema_name,
                'row-count': 0,
                'values': other_values,
                'table-key-properties': {'pk'},
                'selected': None,
                'database-name': database_name,
                'stream_name': 'weirdos',
                'fields': [
                    {"pk": {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
                    {"geospacial": {'sql-datatype': 'geometry', 'selected-by-default': False,
                                    'inclusion': 'unavailable'}},
                    {"geospacial_map": {'sql-datatype': 'geography', 'selected-by-default': False,
                                        'inclusion': 'unavailable'}},
                    {"markup": {'sql-datatype': 'xml', 'selected-by-default': False, 'inclusion': 'unavailable'}},
                    {"guid": {'sql-datatype': 'uniqueidentifier', 'selected-by-default': True,
                              'inclusion': 'available'}},
                    {"tree": {'sql-datatype': 'hierarchyid', 'selected-by-default': False, 'inclusion': 'unavailable'}},
                    {"variant": {'sql-datatype': 'sql_variant', 'selected-by-default': False,
                                 'inclusion': 'unavailable'}},
                    {"SpecialPurposeColumns": {'sql-datatype': 'xml', 'selected-by-default': False,
                                               'inclusion': 'unavailable'}},
                    {"version": {'sql-datatype': 'timestamp', 'selected-by-default': True, 'inclusion': 'available'}}],
                'schema': other_schema},
            'data_types_database_dbo_computed_columns': {
                'is-view': False,
                'schema-name': schema_name,
                'row-count': 0,
                'values': comp_values,
                'table-key-properties': {'pk'},
                'selected': None,
                'database-name': database_name,
                'stream_name': 'computed_columns',
                'fields': [
                    {"pk": {'sql-datatype': 'int', 'selected-by-default': True, 'inclusion': 'automatic'}},
                    {"started_at": {'sql-datatype': 'datetimeoffset', 'selected-by-default': True,
                                    'inclusion': 'available'}},
                    {"ended_at": {'sql-datatype': 'datetimeoffset', 'selected-by-default': True,
                                  'inclusion': 'available'}},
                    {"durations_days": {'sql-datatype': 'int', 'selected-by-default': True,
                                        'inclusion': 'unavailable'}}],
                'schema': comp_schema},
        }

        # test timestamp and usnupported
        table_name = "text_and_image_deprecated_soon"
        column_name = ["pk", "nvarchar_text", "varchar_text", "varbinary_data",
                       "rowversion_synonym_timestamp"]
        column_type = ["int", "ntext", "text", "image", "timestamp"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(database_name, schema_name, table_name, column_def,
                                       primary_key=primary_key, tracking=True))
        query_list.extend(insert(database_name, schema_name, table_name, text_values, column_name[:-1]))

        # test uniqueidentifier and rowversion
        table_name = "weirdos"
        column_name = [
            "pk", "geospacial", "geospacial_map", "markup", "guid", "tree",
            "variant", "SpecialPurposeColumns", "version"
        ]
        column_type = [
            "int", "geometry", "geography", "xml", "uniqueidentifier", "hierarchyid",
            "sql_variant", "xml COLUMN_SET FOR ALL_SPARSE_COLUMNS", "rowversion"
        ]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(database_name, schema_name, table_name, column_def,
                                       primary_key=primary_key, tracking=True))
        # not sure why I have to do this but getting error - Parameter information is missing from a user-defined type.
        for value in other_values:
            query_list.extend(insert(database_name, schema_name, table_name, [value], column_name[:-1]))

        table_name = "computed_columns"
        column_name = ["pk", "started_at", "ended_at", "durations_days"]
        column_type = ["int", "datetimeoffset", "datetimeoffset", "AS DATEDIFF(day, started_at, ended_at)"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(create_table(database_name, schema_name, table_name, column_def,
                                       primary_key=primary_key, tracking=True))
        query_list.extend(insert(database_name, schema_name, table_name, comp_values, column_name[:-1]))
        mssql_cursor_context_manager(*query_list)

        # update values with rowversions
        rows = mssql_cursor_context_manager(*["select version from data_types_database.dbo.weirdos order by pk"])
        rows = ["0x{}".format(value.hex().upper()) for value, in rows]
        cls.EXPECTED_METADATA['data_types_database_dbo_weirdos']['values'] = \
            [other_values[row] + (version,) for row, version in enumerate(rows)]

        rows = mssql_cursor_context_manager(*[
            "select rowversion_synonym_timestamp from data_types_database.dbo.text_and_image_deprecated_soon order by pk"])
        rows = ["0x{}".format(value.hex().upper()) for value, in rows]
        cls.EXPECTED_METADATA['data_types_database_dbo_text_and_image_deprecated_soon']['values'] = \
            [text_values[row] + (version,) for row, version in enumerate(rows)]

        rows = mssql_cursor_context_manager(
            *["select durations_days from data_types_database.dbo.computed_columns order by pk"])
        cls.EXPECTED_METADATA['data_types_database_dbo_computed_columns']['values'] = \
            [comp_values[row] + tuple(version) for row, version in enumerate(rows)]

        cls.expected_metadata = cls.discovery_expected_metadata
Пример #4
0
    def setUpClass(cls) -> None:
        """Create the expected schema in the test database"""

        database_name = "data_types_database"
        schema_name = "dbo"

        cls.EXPECTED_METADATA = {
            'data_types_database_dbo_integers': {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values': [(0, -9223372036854775808, -2147483648, -32768),
                           (1, 0, 0, 0),
                           (2, 9223372036854775807, 2147483647, 32767),
                           (3, None, None, None),
                           (4, 5603121835631323156, 9665315, 11742),
                           (5, -4898597031243117659, 140946744, -16490),
                           (6, -5168593529138936444, -1746890910, 2150),
                           (7, 1331162887494168851, 1048867088, 12136),
                           (8, -4495110645908459596, -1971955745, 18257),
                           (9, -1575653240237191360, -533282078, 22022),
                           (10, 6203877631305833079, 271324086, -18782),
                           (11, 7293147954924079156, 1003163272, 3593),
                           (12, -1302715001442736465, -1626372079, 3788),
                           (13, -9062593720232233398, 1646478731, 17621)],
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                'integers',
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    'MyBigIntColumn': {
                        'sql-datatype': 'bigint',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'MyIntColumn': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'MySmallIntColumn': {
                        'sql-datatype': 'smallint',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema': {
                    'type': 'object',
                    'properties': {
                        'MySmallIntColumn': {
                            'type': ['integer', 'null'],
                            'minimum': -32768,
                            'maximum': 32767,
                            'inclusion': 'available',
                            'selected': True
                        },
                        'pk': {
                            'type': ['integer'],
                            'minimum': -2147483648,
                            'maximum': 2147483647,
                            'inclusion': 'automatic',
                            'selected': True
                        },
                        'MyBigIntColumn': {
                            'type': ['integer', 'null'],
                            'minimum': -9223372036854775808,
                            'maximum': 9223372036854775807,
                            'inclusion': 'available',
                            'selected': True
                        },
                        'MyIntColumn': {
                            'type': ['integer', 'null'],
                            'minimum': -2147483648,
                            'maximum': 2147483647,
                            'inclusion': 'available',
                            'selected': True
                        },
                        "_sdc_deleted_at": {
                            'format': 'date-time',
                            'type': ['string', 'null']
                        }
                    },
                    'selected': True
                }
            },
            'data_types_database_dbo_tiny_integers_and_bools': {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values': [(0, 0, False), (1, 255, True), (2, None, None),
                           (3, 230, False), (4, 6, True), (5, 236, True),
                           (6, 27, True), (7, 132, True), (8, 251, False),
                           (9, 187, True), (10, 157, True), (11, 51, True),
                           (12, 144, True)],
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                'tiny_integers_and_bools',
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    'MyTinyIntColumn': {
                        'sql-datatype': 'tinyint',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'my_boolean': {
                        'sql-datatype': 'bit',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema': {
                    'type': 'object',
                    'properties': {
                        'MyTinyIntColumn': {
                            'type': ['integer', 'null'],
                            'minimum': 0,
                            'maximum': 255,
                            'inclusion': 'available',
                            'selected': True
                        },
                        'pk': {
                            'type': ['integer'],
                            'minimum': -2147483648,
                            'maximum': 2147483647,
                            'inclusion': 'automatic',
                            'selected': True
                        },
                        'my_boolean': {
                            'type': ['boolean', 'null'],
                            'inclusion': 'available',
                            'selected': True
                        },
                        "_sdc_deleted_at": {
                            'format': 'date-time',
                            'type': ['string', 'null']
                        }
                    },
                    'selected': True
                }
            }
        }

        drop_all_user_databases()

        query_list = list(
            create_database(database_name, "Latin1_General_CS_AS"))
        query_list.extend(enable_database_tracking(database_name))

        table_name = "integers"
        column_name = [
            "pk", "MyBigIntColumn", "MyIntColumn", "MySmallIntColumn"
        ]
        column_type = ["int", "bigint", "int", "smallint"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        query_list.extend(
            insert(
                database_name, schema_name, table_name,
                cls.EXPECTED_METADATA["data_types_database_dbo_integers"]
                ["values"]))

        table_name = "tiny_integers_and_bools"
        column_name = ["pk", "MyTinyIntColumn", "my_boolean"]
        column_type = ["int", "tinyint", "bit"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        query_list.extend(
            insert(
                database_name, schema_name, table_name, cls.EXPECTED_METADATA[
                    "data_types_database_dbo_tiny_integers_and_bools"]
                ["values"]))

        mssql_cursor_context_manager(*query_list)
        cls.expected_metadata = cls.discovery_expected_metadata
Пример #5
0
    def setUpClass(cls) -> None:
        """Create the expected schema in the test database"""

        drop_all_user_databases()
        database_name = "data_types_database"
        schema_name = "dbo"

        # use all valid unicode characters
        chars = list(range(0, 55296))
        chars.extend(range(57344, sys.maxunicode))
        chars.reverse()  # pop starting with ascii characters

        char_values = [(pk, "".join([chr(chars.pop()) for _ in range(2)]))
                       for pk in range(16)]
        char_schema = {
            'type': 'object',
            'selected': True,
            'properties': {
                CHAR_NAME: {
                    'type': ['string', 'null'],
                    'maxLength': 2,
                    'inclusion': 'available',
                    'selected': True
                },
                # 'minLength': 2},
                'pk': {
                    'maximum': 2147483647,
                    'type': ['integer'],
                    'inclusion': 'automatic',
                    'selected': True,
                    'minimum': -2147483648
                },
                "_sdc_deleted_at": {
                    'format': 'date-time',
                    'type': ['string', 'null']
                }
            }
        }

        varchar_values = [(pk, chr(chars.pop()), "".join([
            chr(chars.pop()) for _ in range(15)
        ]), "".join([chr(chars.pop()) for _ in range(randint(1, 16))]))
                          for pk in range(3)]
        varchar_schema = {
            'type': 'object',
            'selected': True,
            'properties': {
                'pk': {
                    'maximum': 2147483647,
                    'type': ['integer'],
                    'inclusion': 'automatic',
                    'selected': True,
                    'minimum': -2147483648
                },
                'varchar_8000': {
                    'type': ['string', 'null'],
                    'maxLength': 8000,
                    'inclusion': 'available',
                    'selected': True
                },  # 'minLength': 0},
                VARCHAR_NAME: {
                    'type': ['string', 'null'],
                    'maxLength': 5,
                    'inclusion': 'available',
                    'selected': True
                },
                # 'minLength': 0},
                'varchar_max': {
                    'type': ['string', 'null'],
                    'maxLength': 2147483647,
                    'inclusion': 'available',
                    'selected': True
                },
                "_sdc_deleted_at": {
                    'format': 'date-time',
                    'type': ['string', 'null']
                }
            }
        }
        # 'minLength': 0}}}

        nchar_values = [(pk, "".join([chr(chars.pop()) for _ in range(4)]))
                        for pk in range(3)]
        #  expect that values are right padded with spaces in the db.
        nchar_values = [
            (x, "{}{}".format(y,
                              " " * ((16 - len(y.encode('utf-16-le'))) // 2)))
            for x, y in nchar_values
        ]
        nchar_schema = {
            'type': 'object',
            'selected': True,
            'properties': {
                NCHAR_NAME: {
                    'type': ['string', 'null'],
                    'maxLength': 8,
                    'inclusion': 'available',
                    'selected': True
                },
                # 'minLength': 8},  # length is based on bytes, not characters
                'pk': {
                    'maximum': 2147483647,
                    'type': ['integer'],
                    'inclusion': 'automatic',
                    'selected': True,
                    'minimum': -2147483648
                },
                "_sdc_deleted_at": {
                    'format': 'date-time',
                    'type': ['string', 'null']
                }
            }
        }

        chars.reverse()
        nvarchar_values = [(pk, chr(chars.pop()), "".join([
            chr(chars.pop()) for _ in range(8)
        ]), "".join([chr(chars.pop()) for _ in range(randint(1, 8))]))
                           for pk in range(4)]
        nvarchar_schema = {
            'type': 'object',
            'selected': True,
            'properties': {
                'nvarchar_max': {
                    'type': ['string', 'null'],
                    'maxLength': 2147483647,
                    'inclusion': 'available',
                    'selected': True
                },
                # 'minLength': 0},
                'pk': {
                    'maximum': 2147483647,
                    'type': ['integer'],
                    'inclusion': 'automatic',
                    'selected': True,
                    'minimum': -2147483648
                },
                'nvarchar_4000': {
                    'type': ['string', 'null'],
                    'maxLength': 4000,
                    'inclusion': 'available',
                    'selected': True
                },
                # 'minLength': 0},
                NVARCHAR_NAME: {
                    'type': ['string', 'null'],
                    'maxLength': 5,
                    'inclusion': 'available',
                    'selected': True
                },
                "_sdc_deleted_at": {
                    'format': 'date-time',
                    'type': ['string', 'null']
                }
            }
        }
        # 'minLength': 0}}}

        cls.EXPECTED_METADATA = {
            'data_types_database_dbo_{}'.format(CHAR_NAME): {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values':
                char_values,
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                CHAR_NAME,
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    CHAR_NAME: {
                        'sql-datatype': 'char',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema':
                char_schema
            },
            'data_types_database_dbo_{}'.format(VARCHAR_NAME): {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values':
                varchar_values,
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                VARCHAR_NAME,
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    VARCHAR_NAME: {
                        'sql-datatype': 'varchar',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'varchar_8000': {
                        'sql-datatype': 'varchar',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'varchar_max': {
                        'sql-datatype': 'varchar',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema':
                varchar_schema
            },
            'data_types_database_dbo_{}'.format(NCHAR_NAME): {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values':
                nchar_values,
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                NCHAR_NAME,
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    NCHAR_NAME: {
                        'sql-datatype': 'nchar',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema':
                nchar_schema
            },
            'data_types_database_dbo_{}'.format(NVARCHAR_NAME): {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values':
                nvarchar_values,
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                NVARCHAR_NAME,
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    NVARCHAR_NAME: {
                        'sql-datatype': 'nvarchar',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'nvarchar_4000': {
                        'sql-datatype': 'nvarchar',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'nvarchar_max': {
                        'sql-datatype': 'nvarchar',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema':
                nvarchar_schema
            },
        }
        query_list = list(
            create_database(database_name, "Latin1_General_CS_AS"))
        query_list.extend(enable_database_tracking(database_name))

        table_name = '"{}"'.format(CHAR_NAME)
        column_name = ["pk", table_name]  # , "char_8000"]
        column_type = ["int", "char(2)"]  # , "char(8000)"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        query_list.extend(
            insert(database_name, schema_name, table_name, char_values))

        table_name = "[{}]".format(VARCHAR_NAME)
        column_name = ["pk", table_name, "varchar_8000", "varchar_max"]
        column_type = ["int", "varchar(5)", "varchar(8000)", "varchar(max)"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        query_list.extend(
            insert(database_name, schema_name, table_name, varchar_values))

        table_name = "[{}]".format(NCHAR_NAME)
        column_name = ["pk", "[{}]".format(NCHAR_NAME)]
        column_type = ["int", "nchar(8)"]  # , "nchar(4000)"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        # strip padding off query data
        nchar_query_values = [(x, y.rstrip() if isinstance(y, str) else y)
                              for x, y in nchar_values]
        query_list.extend(
            insert(database_name, schema_name, table_name, nchar_query_values))

        table_name = NVARCHAR_NAME
        column_name = ["pk", NVARCHAR_NAME, "nvarchar_4000", "nvarchar_max"]
        column_type = ["int", "nvarchar(5)", "nvarchar(4000)", "nvarchar(max)"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))

        query_list.extend(
            insert(database_name, schema_name, table_name, nvarchar_values))
        query_list.extend(
            ['-- there are {} characters left to test'.format(len(chars))])

        cls.expected_metadata = cls.discovery_expected_metadata

        mssql_cursor_context_manager(*query_list)
Пример #6
0
    def setUpClass(cls) -> None:
        """Create the expected schema in the test database"""

        database_name = "data_types_database"
        schema_name = "dbo"
        drop_all_user_databases()

        numeric_values = [
            (0, Decimal('-99999.9999'), Decimal('-9999999.999999999999'),
             Decimal('-999999.9999999999999999999999'),
             Decimal('-99999999999999999999999999999999999.999')),
            (1, 0, 0, 0, 0), (2, None, None, None, None),
            (3, Decimal('99999.9993'), Decimal('9999999.999999999999'),
             Decimal('999999.9999999999999999999999'),
             Decimal('99999999999999999999999999999999999.993')),
            (4, Decimal('96701.9382'), Decimal('-4371716.186100650268'),
             Decimal('-367352.306093776232045517794'),
             Decimal('-81147872128956247517327931319278572.985')),
            (5, Decimal('-73621.9366'), Decimal('2564047.277589545531'),
             Decimal('336177.4754683699464233786667'),
             Decimal('46946462608534127558389411015159825.758')),
            (6, Decimal('-3070.7339'), Decimal('6260062.158440967433'),
             Decimal('-987006.0035971607740533206418'),
             Decimal('95478671259010046866787754969592794.61'))
        ]

        numeric_schema = {
            'type': 'object',
            'properties': {
                'numeric_9_4': {
                    'exclusiveMaximum': True,
                    'type': ['number', 'null'],
                    'selected': True,
                    'multipleOf': 0.0001,
                    'maximum': 1e5,
                    'inclusion': 'available',
                    'exclusiveMinimum': True,
                    'minimum': -1e5
                },
                'numeric_19_12': {
                    'exclusiveMaximum': True,
                    'type': ['number', 'null'],
                    'selected': True,
                    'multipleOf': 1e-12,
                    'maximum': 1e7,
                    'inclusion': 'available',
                    'exclusiveMinimum': True,
                    'minimum': -1e7
                },
                'numeric_28_22': {
                    'exclusiveMaximum': True,
                    'type': ['number', 'null'],
                    'selected': True,
                    'multipleOf': 1e-22,
                    'maximum': 1e6,
                    'inclusion': 'available',
                    'exclusiveMinimum': True,
                    'minimum': -1e6
                },
                'replication_key_column': {
                    'exclusiveMaximum': True,
                    'type': ['number', 'null'],
                    'selected': True,
                    'multipleOf': .001,
                    'maximum': 1e35,
                    'inclusion': 'available',
                    'exclusiveMinimum': True,
                    'minimum': -1e35
                },
                'pk': {
                    'maximum': 2147483647,
                    'type': ['integer'],
                    'inclusion': 'automatic',
                    'minimum': -2147483648,
                    'selected': True
                }
            },
            'selected': True
        }

        decimal_values = [
            (0, Decimal('-99999.9999'), Decimal('-9999999999999.999999'),
             Decimal('-9999999999999999999999.999999'),
             Decimal('-9999999999999999999999999.9999999999999')),
            (1, 0, 0, 0, 0), (2, None, None, None, None),
            (3, Decimal('99999.9993'), Decimal('9999999999999.999999'),
             Decimal('9999999999999999999999.999999'),
             Decimal('9999999999999999999999999.9999999999993')),
            (4, Decimal('-92473.8401'), Decimal('-4182159664734.645653'),
             Decimal('6101329656084900380190.268036'),
             Decimal('4778017533841887320066645.9761464001349')),
            (5, Decimal('-57970.8157'), Decimal('7735958802279.086687'),
             Decimal('4848737828398517845540.057905'),
             Decimal('2176036096567853905237453.5152648989022')),
            (6, Decimal('57573.9037'), Decimal('5948502499261.181557'),
             Decimal('-6687721783088280707003.076638'),
             Decimal('-6264019242578746090842245.3746225058202'))
        ]

        decimal_schema = {
            'type': 'object',
            'properties': {
                'decimal_9_4': {
                    'exclusiveMaximum': True,
                    'type': ['number', 'null'],
                    'selected': True,
                    'multipleOf': 0.0001,
                    'maximum': 1e5,
                    'inclusion': 'available',
                    'exclusiveMinimum': True,
                    'minimum': -1e5
                },
                'decimal_19_6': {
                    'exclusiveMaximum': True,
                    'type': ['number', 'null'],
                    'selected': True,
                    'multipleOf': 1e-6,
                    'maximum': 1e13,
                    'inclusion': 'available',
                    'exclusiveMinimum': True,
                    'minimum': -1e13
                },
                'decimal_28_6': {
                    'exclusiveMaximum': True,
                    'type': ['number', 'null'],
                    'selected': True,
                    'multipleOf': 1e-6,
                    'maximum': 1e22,
                    'inclusion': 'available',
                    'exclusiveMinimum': True,
                    'minimum': -1e22
                },
                'replication_key_column': {
                    'exclusiveMaximum': True,
                    'type': ['number', 'null'],
                    'selected': True,
                    'multipleOf': 1e-13,
                    'maximum': 1e25,
                    'inclusion': 'available',
                    'exclusiveMinimum': True,
                    'minimum': -1e25
                },
                'pk': {
                    'maximum': 2147483647,
                    'type': ['integer'],
                    'inclusion': 'automatic',
                    'minimum': -2147483648,
                    'selected': True
                }
            },
            'selected': True
        }

        cls.EXPECTED_METADATA = {
            'data_types_database_dbo_numeric_precisions': {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values':
                numeric_values,
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                'numeric_precisions',
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    'numeric_9_4': {
                        'sql-datatype': 'numeric(9,4)',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'numeric_19_12': {
                        'sql-datatype': 'numeric(19,12)',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'numeric_28_22': {
                        'sql-datatype': 'numeric(28,22)',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'replication_key_column': {
                        'sql-datatype': 'numeric(38,3)',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema':
                numeric_schema
            },
            'data_types_database_dbo_decimal_precisions': {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values':
                decimal_values,
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                'decimal_precisions',
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    'decimal_9_4': {
                        'sql-datatype': 'decimal(9,4)',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'decimal_19_6': {
                        'sql-datatype': 'decimal(19,6)',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'decimal_28_6': {
                        'sql-datatype': 'decimal(28,6)',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'replication_key_column': {
                        'sql-datatype': 'decimal(38,13)',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema':
                decimal_schema
            }
        }
        query_list = list(
            create_database(database_name, "Latin1_General_CS_AS"))
        query_list.extend(enable_database_tracking(database_name))

        # TODO - BUG https://stitchdata.atlassian.net/browse/SRCE-1075
        table_name = "numeric_precisions"
        precision_scale = NUMERIC_PRECISION_SCALE
        column_type = [
            "numeric({},{})".format(precision, scale)
            for precision, scale in precision_scale
        ]
        column_name = ["pk"] + [
            x.replace("(", "_").replace(",", "_").replace(")", "")
            for x in column_type[:-1]
        ] + ["replication_key_column"]
        column_type = ["int"] + column_type
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        query_list.extend(
            insert(
                database_name, schema_name, table_name, cls.EXPECTED_METADATA[
                    "data_types_database_dbo_numeric_precisions"]["values"]))

        table_name = "decimal_precisions"
        precision_scale = DECIMAL_PRECISION_SCALE
        column_type = [
            "decimal({},{})".format(precision, scale)
            for precision, scale in precision_scale
        ]
        column_name = ["pk"] + [
            x.replace("(", "_").replace(",", "_").replace(")", "")
            for x in column_type[:-1]
        ] + ["replication_key_column"]
        column_type = ["int"] + column_type
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        query_list.extend(
            insert(
                database_name, schema_name, table_name, cls.EXPECTED_METADATA[
                    "data_types_database_dbo_decimal_precisions"]["values"]))

        mssql_cursor_context_manager(*query_list)

        cls.expected_metadata = cls.discovery_expected_metadata
Пример #7
0
    def setUpClass(cls) -> None:
        """Create the expected schema in the test database"""

        database_name = "data_types_database"
        schema_name = "dbo"
        drop_all_user_databases()

        values = [
            (0, 1.1754944e-38, 2.2250738585072014e-308, 1.1754944e-38),
            (1, 3.4028230e+38, 1.7976931348623157e+308, 3.4028235e+38),
            (2, -1.1754944e-38, -2.2250738585072014e-308, -1.1754944e-38),
            (3, -3.4028235e+38, -1.7976931348623157e+308, -3.4028235e+38),
            (4, 0.0, 0.0, 0.0), (5, None, None, None),
            (6, 7.830105e-33, 6.46504535047369e-271, 4.0229383e-27),
            (7, 4.4540307e-21, 7.205251086772512e-202, 7.196247e-19),
            (8, 647852.6, 2.1597057137884757e+40, 8.430207e+34),
            (9, 3603.407, 8.811948588549982e+23, 9.1771755e+35),
            (10, -8.451405e-24, -1.783306877438393e-178, -2.2775854e-31),
            (11, -5.8271772e-27, -9.344274532947989e-227, -3.5728205e-18),
            (12, -8.519153e+23, -2.3035944912603858e+241, -5.7120217e+35),
            (13, -30306750.0, -5.222263032559684e+106, -1.9535917e+27)
        ]

        schema = {
            'selected': True,
            'type': 'object',
            'properties': {
                'replication_key_column': {
                    'selected': True,
                    'type': ['number', 'null'],
                    'inclusion': 'available'
                },
                'float_53': {
                    'selected': True,
                    'type': ['number', 'null'],
                    'inclusion': 'available'
                },
                'real_24_bits': {
                    'selected': True,
                    'type': ['number', 'null'],
                    'inclusion': 'available'
                },
                'pk': {
                    'selected': True,
                    'type': ['integer'],
                    'maximum': 2147483647,
                    'minimum': -2147483648,
                    'inclusion': 'automatic'
                }
            }
        }

        cls.EXPECTED_METADATA = {
            'data_types_database_dbo_float_precisions': {
                'is-view':
                False,
                'schema-name':
                schema_name,
                'row-count':
                0,
                'values':
                values,
                'table-key-properties': {'pk'},
                'selected':
                None,
                'database-name':
                database_name,
                'stream_name':
                'float_precisions',
                'fields': [{
                    'pk': {
                        'sql-datatype': 'int',
                        'selected-by-default': True,
                        'inclusion': 'automatic'
                    }
                }, {
                    'replication_key_column': {
                        'sql-datatype': 'real',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'float_53': {
                        'sql-datatype': 'float',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }, {
                    'real_24_bits': {
                        'sql-datatype': 'real',
                        'selected-by-default': True,
                        'inclusion': 'available'
                    }
                }],
                'schema':
                schema
            }
        }

        query_list = list(
            create_database(database_name, "Latin1_General_CS_AS"))
        query_list.extend(enable_database_tracking(database_name))

        table_name = "float_precisions"
        column_name = [
            "pk", "replication_key_column", "float_53", "real_24_bits"
        ]
        column_type = ["int", "float(24)", "float(53)", "real"]
        primary_key = {"pk"}
        column_def = [" ".join(x) for x in list(zip(column_name, column_type))]
        query_list.extend(
            create_table(database_name,
                         schema_name,
                         table_name,
                         column_def,
                         primary_key=primary_key,
                         tracking=True))
        query_list.extend(
            insert(
                database_name, schema_name, table_name, cls.EXPECTED_METADATA[
                    "data_types_database_dbo_float_precisions"]["values"]))

        mssql_cursor_context_manager(*query_list)

        cls.expected_metadata = cls.discovery_expected_metadata