Пример #1
0
def main():
    dc = datacommons.Client()

    # Get lat/long of a city.
    query = ("""
           SELECT ?id ?lat ?long,
             typeOf ?o City,
             name ?o 'San Luis Obispo',
             dcid ?o ?id,
             latitude ?o ?lat,
             longitude ?o ?long
           """)
    print('Issuing query "{}"'.format(query))
    try:
        df = dc.query(query)
    except RuntimeError as e:
        print(e)
        return

    with pd.option_context('display.width', 400, 'display.max_rows', 100):
        print(df)

    saved_file_name = dc.save_dataframe(df, 'test_df')
    print(saved_file_name)
    saved_df = dc.read_dataframe(saved_file_name)
    assert df.equals(saved_df)
Пример #2
0
def main():
  dc = datacommons.Client()

  # Bootstrap with IDs of a few US cities.
  pd_table = pd.DataFrame({
      'city': ['City', 'dc/ve1tlm', 'dc/0vypck3', 'dc/prehdd2']
  })

  # Add names of those cities.
  weather_table = dc.expand(pd_table, 'name', 'city', 'city_name')
  with pd.option_context('display.width', 400, 'display.max_rows', 100):
    print weather_table

  # Add monthly mean temperature for those cities for all 2017 months.
  for d in range(1, 13):
    weather_table = dc.get_observations(
        weather_table,
        seed_col_name='city',
        new_col_name=('temp_2017%.2d' % d),
        start_date=('2017-%.2d-01' % d),
        end_date=('2017-%.2d-01' % d),
        measured_property='temperature',
        stats_type='mean')

  with pd.option_context('display.width', 400, 'display.max_rows', 100):
    print weather_table
Пример #3
0
def main():
    dc = datacommons.Client()

    # Build a table with a single US state
    state_table = dc.get_states('United States', 'state', max_rows=1)

    # Add the state name and the 5 counties contained in that state
    state_table = dc.expand(state_table,
                            'name',
                            'state',
                            'state name',
                            outgoing=True)
    state_table = dc.expand(state_table,
                            'containedInPlace',
                            'state',
                            'county',
                            outgoing=False,
                            max_rows=3)
    state_table = dc.expand(state_table,
                            'name',
                            'county',
                            'county name',
                            outgoing=True)

    state_table = dc.get_populations(state_table,
                                     seed_col_name='county',
                                     new_col_name='county population',
                                     population_type='Person',
                                     max_rows=100)
    with pd.option_context('display.width', 400, 'display.max_rows', 100):
        print state_table

    state_table = dc.get_populations(
        state_table,
        seed_col_name='county',
        new_col_name='county_18_24_years_population',
        population_type='Person',
        max_rows=100,
        age='USC/18To24Years')
    with pd.option_context('display.width', 400, 'display.max_rows', 100):
        print state_table

    state_table = dc.get_populations(state_table,
                                     seed_col_name='county',
                                     new_col_name='county male population',
                                     population_type='Person',
                                     max_rows=100,
                                     gender='Male')
    with pd.option_context('display.width', 400, 'display.max_rows', 100):
        print state_table

    state_table = dc.get_observations(state_table,
                                      seed_col_name='county population',
                                      new_col_name='county person count',
                                      observation_date='2016',
                                      measured_property='count')

    with pd.option_context('display.width', 400, 'display.max_rows', 100):
        print state_table
Пример #4
0
def main():
    dc = datacommons.Client()

    # Get lat/long of a city.
    query = ("""
           SELECT ?id ?lat ?long,
             typeOf ?o City,
             name ?o 'San Luis Obispo',
             dcid ?o ?id,
             latitude ?o ?lat,
             longitude ?o ?long
           """)
    print 'Issuing query "{}"'.format(query)
    try:
        df = dc.Query(query)
    except RuntimeError as e:
        print e
        return

    with pd.option_context('display.width', 400, 'display.max_rows', 100):
        print df
Пример #5
0
def main():
  dc = datacommons.Client()

  # Start with all states in the United States and add the state names. This
  # is an outgoing property of State.
  pd_state = dc.get_states('United States', 'state')
  pd_state = dc.expand(pd_state, 'name', 'state', 'state_name',
                       outgoing=True)

  # Add information for counties contained in states in the 'state' column.
  # Getting the county is an incoming property of State. Note that there are
  # roughly 3100 counties in the United States
  pd_state = dc.expand(pd_state, 'containedInPlace', 'state', 'county',
                       outgoing=False,
                       max_rows=50)
  pd_state = dc.expand(pd_state, 'name', 'county', 'county_name',
                       outgoing=True,
                       max_rows=50)

  # Print out the final data frame
  with pd.option_context('display.width', 400, 'display.max_rows', 100):
    print pd_state
def main():
  dc = datacommons.Client()

  # Start with all states in the United States and add the state names. This
  # is an outgoing property of State.
  pd_state = dc.get_places_in(
      place_type='State',
      container_dcid='dc/2sffw13',  # United States
      col_name='state')
  pd_state = dc.expand(pd_state, 'name', 'state', 'state_name', outgoing=True)

  # Add information for counties contained in states in the 'state' column.
  # Getting the county is an incoming property of State. Note that there are
  # roughly 3100 counties in the United States
  pd_state = dc.expand(
      pd_state,
      'containedInPlace',
      'state',
      'county',
      outgoing=False,
      max_rows=50)
  pd_state = dc.expand(
      pd_state, 'name', 'county', 'county_name', outgoing=True, max_rows=50)

  # Print out the final data frame
  with pd.option_context('display.width', 400, 'display.max_rows', 100):
    print pd_state


  pd_city = dc.get_places_in(
      place_type='City',
      container_dcid='dc/b72vdv',  # California
      col_name='city')
  pd_city = dc.expand(pd_city, 'name', 'city', 'city_name', outgoing=True)
  with pd.option_context('display.width', 400, 'display.max_rows', 100):
    print pd_city
Пример #7
0
def main():
    dc = datacommons.Client()

    # Get a list of "Class" type instance.
    pd_class = dc.get_instances('class', 'Class', max_rows=_MAX_ROW)
    with pd.option_context('display.width', 400, 'display.max_rows', 20):
        print pd_class

    # Get a list of states with their names
    pd_state = dc.get_instances('state', 'State', max_rows=_MAX_ROW)
    pd_state = dc.expand(pd_state,
                         'name',
                         'state',
                         'state_name',
                         outgoing=True)
    with pd.option_context('display.width', 400, 'display.max_rows', 20):
        print pd_state

    # Get a list of cities with their names and timezone.
    pd_city = dc.get_instances('city', 'City', max_rows=_MAX_ROW)
    pd_city = dc.expand(pd_city, 'name', 'city', 'name', outgoing=True)
    pd_city = dc.expand(pd_city, 'timezone', 'city', 'timezone', outgoing=True)
    with pd.option_context('display.width', 400, 'display.max_rows', 20):
        print pd_city