Пример #1
0
class Interaction(BaseESModel):
    """Elasticsearch representation of Interaction model."""

    id = Keyword()
    company = fields.company_field()
    company_sector = fields.sector_field()
    company_one_list_group_tier = fields.id_unindexed_name_field()
    communication_channel = fields.id_unindexed_name_field()
    contacts = _contact_field()
    created_on = Date()
    date = Date()
    dit_participants = Object(_DITParticipant)
    event = fields.id_name_partial_field()
    investment_project = fields.id_unindexed_name_field()
    investment_project_sector = fields.sector_field()
    is_event = Boolean(index=False)
    grant_amount_offered = Double(index=False)
    kind = Keyword()
    modified_on = Date()
    net_company_receipt = Double(index=False)
    notes = fields.Text(index=False)
    policy_areas = fields.id_unindexed_name_field()
    policy_issue_types = fields.id_unindexed_name_field()
    service = fields.id_unindexed_name_field()
    service_delivery_status = fields.id_unindexed_name_field()
    subject = fields.NormalizedKeyword(
        fields={
            'english': fields.EnglishText(),
        },
    )
    was_policy_feedback_provided = Boolean()
    were_countries_discussed = Boolean()
    export_countries = _export_country_field()

    MAPPINGS = {
        'company': dict_utils.company_dict,
        'communication_channel': dict_utils.id_name_dict,
        'contacts': dict_utils.contact_or_adviser_list_of_dicts,
        'dit_participants': _dit_participant_list,
        'export_countries': _export_countries_list,
        'event': dict_utils.id_name_dict,
        'investment_project': dict_utils.id_name_dict,
        'policy_areas': dict_utils.id_name_list_of_dicts,
        'policy_issue_types': dict_utils.id_name_list_of_dicts,
        'service': dict_utils.id_name_dict,
        'service_delivery_status': dict_utils.id_name_dict,
    }

    COMPUTED_MAPPINGS = {
        'company_sector': dict_utils.computed_nested_sector_dict('company.sector'),
        'company_one_list_group_tier': lambda obj: dict_utils.id_name_dict(
            obj.company.get_one_list_group_tier() if obj.company else None,
        ),
        'investment_project_sector': dict_utils.computed_nested_sector_dict(
            'investment_project.sector',
        ),
        'is_event': attrgetter('is_event'),
    }

    SEARCH_FIELDS = (
        'id',
        'company.name',
        'company.name.trigram',
        'contacts.name',  # to find 2-letter words
        'contacts.name.trigram',
        'event.name',
        'event.name.trigram',
        'subject.english',
        'dit_participants.adviser.name',
        'dit_participants.adviser.name.trigram',
        'dit_participants.team.name',
        'dit_participants.team.name.trigram',
    )

    class Meta:
        """Default document meta data."""

        doc_type = DOC_TYPE

    class Index:
        doc_type = DOC_TYPE
Пример #2
0
class Company(BaseESModel):
    """Elasticsearch representation of Company model."""

    id = Keyword()
    archived = Boolean()
    archived_by = fields.contact_or_adviser_field()
    archived_on = Date()
    archived_reason = Text()
    business_type = fields.id_name_field()
    companies_house_data = fields.ch_company_field()
    company_number = fields.NormalizedKeyword()
    created_on = Date()
    description = fields.EnglishText()
    employee_range = fields.id_name_field()
    export_experience_category = fields.id_name_field()
    export_to_countries = fields.id_name_field()
    future_interest_countries = fields.id_name_field()
    global_headquarters = fields.id_name_field()
    headquarter_type = fields.id_name_field()
    modified_on = Date()
    name = Text(fields={
        'keyword': fields.NormalizedKeyword(),
        'trigram': fields.TrigramText(),
    }, )
    reference_code = fields.NormalizedKeyword()
    sector = fields.sector_field()
    address = fields.address_field()
    registered_address = fields.address_field()

    # TODO: delete once the migration to address and registered address is complete
    registered_address_1 = Text()
    registered_address_2 = Text()
    registered_address_town = fields.NormalizedKeyword()
    registered_address_county = Text()
    registered_address_country = fields.id_name_partial_field()
    registered_address_postcode = Text(copy_to=[
        'registered_address_postcode_trigram',
    ], )
    registered_address_postcode_trigram = fields.TrigramText()
    trading_address_1 = Text()
    trading_address_2 = Text()
    trading_address_town = fields.NormalizedKeyword()
    trading_address_county = Text()
    trading_address_postcode = Text(
        copy_to=['trading_address_postcode_trigram'], )
    trading_address_postcode_trigram = fields.TrigramText()
    trading_address_country = fields.id_name_partial_field()

    trading_names = Text(copy_to=['trading_names_trigram'], )
    trading_names_trigram = fields.TrigramText()
    turnover_range = fields.id_name_field()
    uk_region = fields.id_name_field()
    uk_based = Boolean()
    vat_number = Keyword(index=False)
    duns_number = Keyword()
    website = Text()
    suggest = Completion()

    COMPUTED_MAPPINGS = {
        'suggest':
        get_suggestions,
        'address':
        partial(dict_utils.address_dict, prefix='address'),
        'registered_address':
        partial(dict_utils.address_dict, prefix='registered_address'),
    }

    MAPPINGS = {
        'archived_by':
        dict_utils.contact_or_adviser_dict,
        'business_type':
        dict_utils.id_name_dict,
        'companies_house_data':
        dict_utils.ch_company_dict,
        'employee_range':
        dict_utils.id_name_dict,
        'export_experience_category':
        dict_utils.id_name_dict,
        'export_to_countries':
        lambda col: [dict_utils.id_name_dict(c) for c in col.all()],
        'future_interest_countries':
        lambda col: [dict_utils.id_name_dict(c) for c in col.all()],
        'global_headquarters':
        dict_utils.id_name_dict,
        'headquarter_type':
        dict_utils.id_name_dict,
        'sector':
        dict_utils.sector_dict,

        # TODO: delete once the migration to address and registered address is complete
        'registered_address_country':
        dict_utils.id_name_dict,
        'trading_address_country':
        dict_utils.id_name_dict,
        'turnover_range':
        dict_utils.id_name_dict,
        'uk_based':
        bool,
        'uk_region':
        dict_utils.id_name_dict,
    }

    SEARCH_FIELDS = (
        'id',
        'name',  # to find 2-letter words
        'name.trigram',
        'company_number',
        'trading_names',  # to find 2-letter words
        'trading_names_trigram',
        'reference_code',
        'address.country.name.trigram',
        'address.postcode.trigram',
        'registered_address.country.name.trigram',
        'registered_address.postcode.trigram',
    )

    class Meta:
        """Default document meta data."""

        doc_type = DOC_TYPE

    class Index:
        doc_type = DOC_TYPE
Пример #3
0
class InvestmentProject(BaseESModel):
    """Elasticsearch representation of InvestmentProject."""

    id = Keyword()
    actual_land_date = Date()
    actual_uk_regions = fields.id_name_field()
    address_1 = Text()
    address_2 = Text()
    address_town = fields.NormalizedKeyword()
    address_postcode = Text()
    approved_commitment_to_invest = Boolean()
    approved_fdi = Boolean()
    approved_good_value = Boolean()
    approved_high_value = Boolean()
    approved_landed = Boolean()
    approved_non_fdi = Boolean()
    allow_blank_estimated_land_date = Boolean(index=False)
    allow_blank_possible_uk_regions = Boolean(index=False)
    anonymous_description = fields.EnglishText()
    archived = Boolean()
    archived_by = fields.contact_or_adviser_field()
    archived_on = Date()
    archived_reason = Text()
    associated_non_fdi_r_and_d_project = _related_investment_project_field()
    average_salary = fields.id_name_field()
    business_activities = fields.id_name_field()
    client_cannot_provide_foreign_investment = Boolean()
    client_cannot_provide_total_investment = Boolean()
    client_contacts = fields.contact_or_adviser_field()
    client_relationship_manager = fields.contact_or_adviser_field(
        include_dit_team=True)
    client_requirements = Text(index=False)
    comments = fields.EnglishText()
    country_investment_originates_from = fields.id_name_field()
    country_lost_to = Object(properties={
        'id': Keyword(index=False),
        'name': Text(index=False),
    }, )
    created_on = Date()
    created_by = fields.contact_or_adviser_field(include_dit_team=True)
    date_abandoned = Date()
    date_lost = Date()
    delivery_partners = fields.id_name_field()
    description = fields.EnglishText()
    estimated_land_date = Date()
    export_revenue = Boolean()
    fdi_type = fields.id_name_field()
    fdi_value = fields.id_name_field()
    foreign_equity_investment = Double()
    government_assistance = Boolean()
    intermediate_company = fields.id_name_field()
    investor_company = fields.id_name_partial_field()
    investor_company_country = fields.id_name_field()
    investment_type = fields.id_name_field()
    investor_type = fields.id_name_field()
    level_of_involvement = fields.id_name_field()
    likelihood_to_land = fields.id_name_field()
    project_assurance_adviser = fields.contact_or_adviser_field(
        include_dit_team=True)
    project_manager = fields.contact_or_adviser_field(include_dit_team=True)
    name = Text(fields={
        'keyword': fields.NormalizedKeyword(),
        'trigram': fields.TrigramText(),
    }, )
    new_tech_to_uk = Boolean()
    non_fdi_r_and_d_budget = Boolean()
    number_new_jobs = Integer()
    number_safeguarded_jobs = Long()
    modified_on = Date()
    project_arrived_in_triage_on = Date()
    project_code = fields.NormalizedKeyword(fields={
        'trigram': fields.TrigramText(),
    }, )
    proposal_deadline = Date()
    other_business_activity = Text(index=False)
    quotable_as_public_case_study = Boolean()
    r_and_d_budget = Boolean()
    reason_abandoned = Text(index=False)
    reason_delayed = Text(index=False)
    reason_lost = Text(index=False)
    referral_source_activity = fields.id_name_field()
    referral_source_activity_event = fields.NormalizedKeyword()
    referral_source_activity_marketing = fields.id_name_field()
    referral_source_activity_website = fields.id_name_field()
    referral_source_adviser = Object(properties={
        'id': Keyword(index=False),
        'first_name': Text(index=False),
        'last_name': Text(index=False),
        'name': Text(index=False),
    }, )
    sector = fields.sector_field()
    site_decided = Boolean()
    some_new_jobs = Boolean()
    specific_programme = fields.id_name_field()
    stage = fields.id_name_field()
    status = fields.NormalizedKeyword()
    team_members = fields.contact_or_adviser_field(include_dit_team=True)
    total_investment = Double()
    uk_company = fields.id_name_partial_field()
    uk_company_decided = Boolean()
    uk_region_locations = fields.id_name_field()
    will_new_jobs_last_two_years = Boolean()
    level_of_involvement_simplified = Keyword()

    gross_value_added = Double()

    MAPPINGS = {
        'actual_uk_regions':
        lambda col: [dict_utils.id_name_dict(c) for c in col.all()],
        'archived_by':
        dict_utils.contact_or_adviser_dict,
        'associated_non_fdi_r_and_d_project':
        dict_utils.investment_project_dict,
        'average_salary':
        dict_utils.id_name_dict,
        'business_activities':
        lambda col: [dict_utils.id_name_dict(c) for c in col.all()],
        'client_contacts':
        lambda col: [dict_utils.contact_or_adviser_dict(c) for c in col.all()],
        'client_relationship_manager':
        dict_utils.adviser_dict_with_team,
        'country_lost_to':
        dict_utils.id_name_dict,
        'country_investment_originates_from':
        dict_utils.id_name_dict,
        'created_by':
        dict_utils.adviser_dict_with_team,
        'delivery_partners':
        lambda col: [dict_utils.id_name_dict(c) for c in col.all()],
        'fdi_type':
        dict_utils.id_name_dict,
        'fdi_value':
        dict_utils.id_name_dict,
        'intermediate_company':
        dict_utils.id_name_dict,
        'investment_type':
        dict_utils.id_name_dict,
        'investor_company':
        dict_utils.id_name_dict,
        'investor_company_country':
        dict_utils.id_name_dict,
        'investor_type':
        dict_utils.id_name_dict,
        'level_of_involvement':
        dict_utils.id_name_dict,
        'likelihood_to_land':
        dict_utils.id_name_dict,
        'project_assurance_adviser':
        dict_utils.adviser_dict_with_team,
        'project_code':
        str,
        'project_manager':
        dict_utils.adviser_dict_with_team,
        'referral_source_activity':
        dict_utils.id_name_dict,
        'referral_source_activity_marketing':
        dict_utils.id_name_dict,
        'referral_source_activity_website':
        dict_utils.id_name_dict,
        'referral_source_adviser':
        dict_utils.contact_or_adviser_dict,
        'sector':
        dict_utils.sector_dict,
        'specific_programme':
        dict_utils.id_name_dict,
        'stage':
        dict_utils.id_name_dict,
        'team_members':
        lambda col: [
            dict_utils.contact_or_adviser_dict(c.adviser,
                                               include_dit_team=True)
            for c in col.all()
        ],
        'uk_company':
        dict_utils.id_name_dict,
        'uk_region_locations':
        lambda col: [dict_utils.id_name_dict(c) for c in col.all()],
    }

    SEARCH_FIELDS = (
        'id',
        'name',
        'name.trigram',
        'uk_company.name',
        'uk_company.name.trigram',
        'investor_company.name',
        'investor_company.name.trigram',
        'project_code.trigram',
    )

    class Meta:
        """Default document meta data."""

        doc_type = DOC_TYPE

    class Index:
        doc_type = DOC_TYPE
Пример #4
0
class Event(BaseESModel):
    """Elasticsearch representation of Event model."""

    id = Keyword()
    address_1 = Text()
    address_2 = Text()
    address_town = fields.NormalizedKeyword()
    address_county = fields.NormalizedKeyword()
    address_postcode = fields.TextWithTrigram()
    address_country = fields.id_name_partial_field()
    created_on = Date()
    disabled_on = Date()
    end_date = Date()
    event_type = fields.id_name_field()
    lead_team = fields.id_name_field()
    location_type = fields.id_name_field()
    modified_on = Date()
    name = Text(fields={
        'keyword': fields.NormalizedKeyword(),
        'trigram': fields.TrigramText(),
    }, )
    notes = fields.EnglishText()
    organiser = fields.contact_or_adviser_field()
    related_programmes = fields.id_name_partial_field()
    service = fields.id_name_field()
    start_date = Date()
    teams = fields.id_name_partial_field()
    uk_region = fields.id_name_partial_field()

    MAPPINGS = {
        'address_country':
        dict_utils.id_name_dict,
        'event_type':
        dict_utils.id_name_dict,
        'lead_team':
        dict_utils.id_name_dict,
        'location_type':
        dict_utils.id_name_dict,
        'organiser':
        dict_utils.contact_or_adviser_dict,
        'related_programmes':
        lambda col: [dict_utils.id_name_dict(c) for c in col.all()],
        'service':
        dict_utils.id_name_dict,
        'teams':
        lambda col: [dict_utils.id_name_dict(c) for c in col.all()],
        'uk_region':
        dict_utils.id_name_dict,
    }

    COMPUTED_MAPPINGS = {}

    SEARCH_FIELDS = (
        'id',
        'name',
        'name.trigram',
        'address_country.name.trigram',
        'address_postcode.trigram',
        'uk_region.name.trigram',
        'organiser.name.trigram',
        'teams.name',
        'teams.name.trigram',
        'related_programmes.name',
        'related_programmes.name.trigram',
    )

    class Meta:
        """Default document meta data."""

        doc_type = DEFAULT_MAPPING_TYPE

    class Index:
        doc_type = DEFAULT_MAPPING_TYPE