def list_to_img(all_left_img, all_right_img, all_left_disp, index, batchsize, training=True, use_bn=False): list_left_img = [] list_right_img = [] list_left_disp = [] initial_index = index * batchsize for i in range(batchsize): left_img = Image.open(all_left_img[initial_index + i]).convert('RGB') right_img = Image.open(all_right_img[initial_index + i]).convert('RGB') left_disp, _ = rp.readPFM(all_left_disp[initial_index + i]) left_disp = np.ascontiguousarray(left_disp, dtype=np.float32) if training: w, h = left_img.size th, tw = 256, 512 x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) left_img = left_img.crop((x1, y1, x1 + tw, y1 + th)) right_img = right_img.crop((x1, y1, x1 + tw, y1 + th)) left_disp = left_disp[y1:y1 + th, x1:x1 + tw] left_img = np.array(left_img, dtype=np.float32) right_img = np.array(right_img, dtype=np.float32) if use_bn: left_img = scale_crop(left_img) right_img = scale_crop(right_img) list_left_img.append(left_img) list_right_img.append(right_img) list_left_disp.append(left_disp) batch_left_img = np.array(list_left_img) batch_right_img = np.array(list_right_img) batch_left_disp = np.array(list_left_disp) return batch_left_img, batch_right_img, batch_left_disp
def disparity_loader(path): return rp.readPFM(path)
def disparity_loader(path): # print(path) img = rp.readPFM(path) plt.imshow(img) plt.show() return img
def disparity_loader(path): # print(path) return rp.readPFM(path)
def disparity_loader(path): return rp.readPFM(path, False) #Don't flip pfm