Пример #1
0
from sklearn.cluster import KMeans

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier

from sklearn.linear_model import LinearRegression

import random

%matplotlib inline


random.seed(100)

dataloader = Dataloader('Bike-Sharing-Dataset/hour.csv')
train, val, test = dataloader.getData()
fullData = dataloader.getFullData()

category_features = ['season', 'holiday', 'mnth', 'hr', 'weekday', 'workingday', 'weathersit']
number_features = ['temp', 'atemp', 'hum', 'windspeed']

features= category_features + number_features
target = ['cnt']
sns.set(font_scale=1.0)
fig, axes = plt.subplots(nrows=3,ncols=2)
fig.set_size_inches(15, 15)
sns.boxplot(data=train,y="cnt",orient="v",ax=axes[0][0])
sns.boxplot(data=train,y="cnt",x="mnth",orient="v",ax=axes[0][1])
sns.boxplot(data=train,y="cnt",x="weathersit",orient="v",ax=axes[1][0])
sns.boxplot(data=train,y="cnt",x="workingday",orient="v",ax=axes[1][1])
sns.boxplot(data=train,y="cnt",x="hr",orient="v",ax=axes[2][0])
Пример #2
0
from dataloader import Dataloader
from kalman import Kalman
from nengo.processes import Piecewise

dt = 0.02  # simulation time step
t_rc = 0.01  # membrane RC time constant
t_ref = 0.001  # refractory period
tau = 0.009  # synapse time constant for standard first-order lowpass filter synapse
N_A = 1000  # number of neurons in first population
rate_A = 200, 400  # range of maximum firing rates for population A
pool = 0

dataloader = Dataloader()
kalman = Kalman()

trainX, trainY, testX, testY = dataloader.getData()
ChN = np.where(np.sum(trainX, axis=1) != 0)
trainX = np.squeeze(trainX[ChN, :])
testX = np.squeeze(testX[ChN, :])

A_0, B_0 = kalman.calculate(trainX, trainY, pool=pool, dt=dt, tau=tau)

# A_1, B_1 = kalman.calculate(trainX, trainY, pool=1, dt=dt, tau=tau)

# kalman.Kalman_Filter(testX, testY)

# kalman.standard_Kalman_Filter(testX, testY)

#