def train(args, snapshot_path):
    base_lr = args.base_lr
    train_data_path = args.root_path
    batch_size = args.batch_size
    max_iterations = args.max_iterations
    num_classes = 2

    def create_model(ema=False):
        # Network definition
        net = net_factory_3d(net_type=args.model,
                             in_chns=1,
                             class_num=num_classes)
        model = net.cuda()
        if ema:
            for param in model.parameters():
                param.detach_()
        return model

    model = create_model()
    ema_model = create_model(ema=True)

    db_train = BraTS2019(base_dir=train_data_path,
                         split='train',
                         num=None,
                         transform=transforms.Compose([
                             RandomRotFlip(),
                             RandomCrop(args.patch_size),
                             ToTensor(),
                         ]))

    def worker_init_fn(worker_id):
        random.seed(args.seed + worker_id)

    labeled_idxs = list(range(0, args.labeled_num))
    unlabeled_idxs = list(range(args.labeled_num, 250))
    batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs,
                                          batch_size,
                                          batch_size - args.labeled_bs)

    trainloader = DataLoader(db_train,
                             batch_sampler=batch_sampler,
                             num_workers=4,
                             pin_memory=True,
                             worker_init_fn=worker_init_fn)

    model.train()
    ema_model.train()

    optimizer = optim.SGD(model.parameters(),
                          lr=base_lr,
                          momentum=0.9,
                          weight_decay=0.0001)
    ce_loss = CrossEntropyLoss()
    dice_loss = losses.DiceLoss(2)

    writer = SummaryWriter(snapshot_path + '/log')
    logging.info("{} iterations per epoch".format(len(trainloader)))

    iter_num = 0
    max_epoch = max_iterations // len(trainloader) + 1
    best_performance = 0.0
    iterator = tqdm(range(max_epoch), ncols=70)
    for epoch_num in iterator:
        for i_batch, sampled_batch in enumerate(trainloader):

            volume_batch, label_batch = sampled_batch['image'], sampled_batch[
                'label']
            volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
            unlabeled_volume_batch = volume_batch[args.labeled_bs:]

            noise = torch.clamp(
                torch.randn_like(unlabeled_volume_batch) * 0.1, -0.2, 0.2)
            ema_inputs = unlabeled_volume_batch + noise

            outputs = model(volume_batch)
            outputs_soft = torch.softmax(outputs, dim=1)
            with torch.no_grad():
                ema_output = ema_model(ema_inputs)
            T = 8
            _, _, d, w, h = unlabeled_volume_batch.shape
            volume_batch_r = unlabeled_volume_batch.repeat(2, 1, 1, 1, 1)
            stride = volume_batch_r.shape[0] // 2
            preds = torch.zeros([stride * T, 2, d, w, h]).cuda()
            for i in range(T // 2):
                ema_inputs = volume_batch_r + \
                    torch.clamp(torch.randn_like(
                        volume_batch_r) * 0.1, -0.2, 0.2)
                with torch.no_grad():
                    preds[2 * stride * i:2 * stride *
                          (i + 1)] = ema_model(ema_inputs)
            preds = torch.softmax(preds, dim=1)
            preds = preds.reshape(T, stride, 2, d, w, h)
            preds = torch.mean(preds, dim=0)
            uncertainty = -1.0 * \
                torch.sum(preds*torch.log(preds + 1e-6), dim=1, keepdim=True)

            loss_ce = ce_loss(outputs[:args.labeled_bs],
                              label_batch[:args.labeled_bs][:])
            loss_dice = dice_loss(outputs_soft[:args.labeled_bs],
                                  label_batch[:args.labeled_bs].unsqueeze(1))
            supervised_loss = 0.5 * (loss_dice + loss_ce)
            consistency_weight = get_current_consistency_weight(iter_num //
                                                                150)
            consistency_dist = losses.softmax_mse_loss(
                outputs[args.labeled_bs:],
                ema_output)  # (batch, 2, 112,112,80)
            threshold = (0.75 + 0.25 * ramps.sigmoid_rampup(
                iter_num, max_iterations)) * np.log(2)
            mask = (uncertainty < threshold).float()
            consistency_loss = torch.sum(
                mask * consistency_dist) / (2 * torch.sum(mask) + 1e-16)

            loss = supervised_loss + consistency_weight * consistency_loss
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            update_ema_variables(model, ema_model, args.ema_decay, iter_num)

            lr_ = base_lr * (1.0 - iter_num / max_iterations)**0.9
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr_

            iter_num = iter_num + 1
            writer.add_scalar('info/lr', lr_, iter_num)
            writer.add_scalar('info/total_loss', loss, iter_num)
            writer.add_scalar('info/loss_ce', loss_ce, iter_num)
            writer.add_scalar('info/loss_dice', loss_dice, iter_num)
            writer.add_scalar('info/consistency_loss', consistency_loss,
                              iter_num)
            writer.add_scalar('info/consistency_weight', consistency_weight,
                              iter_num)

            logging.info(
                'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' %
                (iter_num, loss.item(), loss_ce.item(), loss_dice.item()))
            writer.add_scalar('loss/loss', loss, iter_num)

            if iter_num % 20 == 0:
                image = volume_batch[0, 0:1, :, :,
                                     20:61:10].permute(3, 0, 1,
                                                       2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=True)
                writer.add_image('train/Image', grid_image, iter_num)

                image = outputs_soft[0, 1:2, :, :,
                                     20:61:10].permute(3, 0, 1,
                                                       2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Predicted_label', grid_image, iter_num)

                image = label_batch[0, :, :, 20:61:10].unsqueeze(0).permute(
                    3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Groundtruth_label', grid_image,
                                 iter_num)

            if iter_num > 0 and iter_num % 200 == 0:
                model.eval()
                avg_metric = test_all_case(model,
                                           args.root_path,
                                           test_list="val.txt",
                                           num_classes=2,
                                           patch_size=args.patch_size,
                                           stride_xy=64,
                                           stride_z=64)
                if avg_metric[:, 0].mean() > best_performance:
                    best_performance = avg_metric[:, 0].mean()
                    save_mode_path = os.path.join(
                        snapshot_path, 'iter_{}_dice_{}.pth'.format(
                            iter_num, round(best_performance, 4)))
                    save_best = os.path.join(
                        snapshot_path, '{}_best_model.pth'.format(args.model))
                    torch.save(model.state_dict(), save_mode_path)
                    torch.save(model.state_dict(), save_best)

                writer.add_scalar('info/val_dice_score', avg_metric[0, 0],
                                  iter_num)
                writer.add_scalar('info/val_hd95', avg_metric[0, 1], iter_num)
                logging.info('iteration %d : dice_score : %f hd95 : %f' %
                             (iter_num, avg_metric[0, 0].mean(),
                              avg_metric[0, 1].mean()))
                model.train()

            if iter_num % 3000 == 0:
                save_mode_path = os.path.join(snapshot_path,
                                              'iter_' + str(iter_num) + '.pth')
                torch.save(model.state_dict(), save_mode_path)
                logging.info("save model to {}".format(save_mode_path))

            if iter_num >= max_iterations:
                break
        if iter_num >= max_iterations:
            iterator.close()
            break
    writer.close()
    return "Training Finished!"
Пример #2
0
def train(args, snapshot_path):
    num_classes = 2
    base_lr = args.base_lr
    train_data_path = args.root_path
    batch_size = args.batch_size
    max_iterations = args.max_iterations

    net = unet_3D(n_classes=num_classes, in_channels=1)
    model = net.cuda()
    DAN = FC3DDiscriminator(num_classes=num_classes)
    DAN = DAN.cuda()

    db_train = BraTS2019(base_dir=train_data_path,
                         split='train',
                         num=None,
                         transform=transforms.Compose([
                             RandomRotFlip(),
                             RandomCrop(args.patch_size),
                             ToTensor(),
                         ]))

    def worker_init_fn(worker_id):
        random.seed(args.seed + worker_id)

    labeled_idxs = list(range(0, args.labeled_num))
    unlabeled_idxs = list(range(args.labeled_num, 250))
    batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs,
                                          batch_size,
                                          batch_size - args.labeled_bs)

    trainloader = DataLoader(db_train,
                             batch_sampler=batch_sampler,
                             num_workers=4,
                             pin_memory=True,
                             worker_init_fn=worker_init_fn)

    model.train()

    optimizer = optim.SGD(model.parameters(),
                          lr=base_lr,
                          momentum=0.9,
                          weight_decay=0.0001)
    DAN_optimizer = optim.Adam(DAN.parameters(),
                               lr=args.DAN_lr,
                               betas=(0.9, 0.99))
    ce_loss = CrossEntropyLoss()
    dice_loss = losses.DiceLoss(2)

    writer = SummaryWriter(snapshot_path + '/log')
    logging.info("{} iterations per epoch".format(len(trainloader)))

    iter_num = 0
    max_epoch = max_iterations // len(trainloader) + 1
    best_performance = 0.0
    iterator = tqdm(range(max_epoch), ncols=70)
    for epoch_num in iterator:
        for i_batch, sampled_batch in enumerate(trainloader):

            volume_batch, label_batch = sampled_batch['image'], sampled_batch[
                'label']
            volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()

            DAN_target = torch.tensor([1, 1, 0, 0]).cuda()
            model.train()
            DAN.eval()

            outputs = model(volume_batch)
            outputs_soft = torch.softmax(outputs, dim=1)

            loss_ce = ce_loss(outputs, label_batch[:])
            loss_dice = dice_loss(outputs_soft, label_batch.unsqueeze(1))
            supervised_loss = 0.5 * (loss_dice + loss_ce)

            consistency_weight = get_current_consistency_weight(iter_num //
                                                                150)
            DAN_outputs = DAN(outputs_soft[args.labeled_bs:],
                              volume_batch[args.labeled_bs:])

            consistency_loss = F.cross_entropy(
                DAN_outputs, (DAN_target[:args.labeled_bs]).long())
            loss = supervised_loss + consistency_weight * consistency_loss
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            model.eval()
            DAN.train()
            with torch.no_grad():
                outputs = model(volume_batch)
                outputs_soft = torch.softmax(outputs, dim=1)

            DAN_outputs = DAN(outputs_soft, volume_batch)
            DAN_loss = F.cross_entropy(DAN_outputs, DAN_target.long())
            DAN_optimizer.zero_grad()
            DAN_loss.backward()
            DAN_optimizer.step()

            lr_ = base_lr * (1.0 - iter_num / max_iterations)**0.9
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr_

            iter_num = iter_num + 1
            writer.add_scalar('info/lr', lr_, iter_num)
            writer.add_scalar('info/total_loss', loss, iter_num)
            writer.add_scalar('info/loss_ce', loss_ce, iter_num)
            writer.add_scalar('info/loss_dice', loss_dice, iter_num)
            writer.add_scalar('info/consistency_loss', consistency_loss,
                              iter_num)
            writer.add_scalar('info/consistency_weight', consistency_weight,
                              iter_num)

            logging.info(
                'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' %
                (iter_num, loss.item(), loss_ce.item(), loss_dice.item()))

            if iter_num % 20 == 0:
                image = volume_batch[0, 0:1, :, :,
                                     20:61:10].permute(3, 0, 1,
                                                       2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=True)
                writer.add_image('train/Image', grid_image, iter_num)

                image = outputs_soft[0, 1:2, :, :,
                                     20:61:10].permute(3, 0, 1,
                                                       2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Predicted_label', grid_image, iter_num)

                image = label_batch[0, :, :, 20:61:10].unsqueeze(0).permute(
                    3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Groundtruth_label', grid_image,
                                 iter_num)

            if iter_num > 0 and iter_num % 200 == 0:
                model.eval()
                avg_metric = test_all_case(model,
                                           args.root_path,
                                           test_list="val.txt",
                                           num_classes=2,
                                           patch_size=args.patch_size,
                                           stride_xy=64,
                                           stride_z=64)
                if avg_metric[:, 0].mean() > best_performance:
                    best_performance = avg_metric[:, 0].mean()
                    save_mode_path = os.path.join(
                        snapshot_path, 'iter_{}_dice_{}.pth'.format(
                            iter_num, round(best_performance, 4)))
                    save_best = os.path.join(
                        snapshot_path, '{}_best_model.pth'.format(args.model))
                    torch.save(model.state_dict(), save_mode_path)
                    torch.save(model.state_dict(), save_best)

                writer.add_scalar('info/val_dice_score', avg_metric[0, 0],
                                  iter_num)
                writer.add_scalar('info/val_hd95', avg_metric[0, 1], iter_num)
                logging.info('iteration %d : dice_score : %f hd95 : %f' %
                             (iter_num, avg_metric[0, 0].mean(),
                              avg_metric[0, 1].mean()))
                model.train()

            if iter_num % 3000 == 0:
                save_mode_path = os.path.join(snapshot_path,
                                              'iter_' + str(iter_num) + '.pth')
                torch.save(model.state_dict(), save_mode_path)
                logging.info("save model to {}".format(save_mode_path))

            if iter_num >= max_iterations:
                break
        if iter_num >= max_iterations:
            iterator.close()
            break
    writer.close()
    return "Training Finished!"
def train(args, snapshot_path):
    base_lr = args.base_lr
    train_data_path = args.root_path
    batch_size = args.batch_size
    max_iterations = args.max_iterations

    def create_model(ema=False):
        # Network definition
        net = unet_3D(n_classes=2, in_channels=1)
        model = net.cuda()
        if ema:
            for param in model.parameters():
                param.detach_()
        return model

    model = create_model()
    ema_model = create_model(ema=True)

    db_train = BraTS2019(base_dir=train_data_path,
                         split='train',
                         num=None,
                         transform=transforms.Compose([
                             RandomRotFlip(),
                             RandomCrop(args.patch_size),
                             ToTensor(),
                         ]))

    def worker_init_fn(worker_id):
        random.seed(args.seed + worker_id)

    labeled_idxs = list(range(0, args.labeled_num))
    unlabeled_idxs = list(range(args.labeled_num, args.total_labeled_num))
    batch_sampler = TwoStreamBatchSampler(
        labeled_idxs, unlabeled_idxs, batch_size, batch_size-args.labeled_bs)

    trainloader = DataLoader(db_train, batch_sampler=batch_sampler,
                             num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn)

    model.train()
    ema_model.train()

    optimizer = optim.SGD(model.parameters(), lr=base_lr,
                          momentum=0.9, weight_decay=0.0001)
    ce_loss = CrossEntropyLoss()
    dice_loss = losses.DiceLoss(2)

    writer = SummaryWriter(snapshot_path + '/log')
    logging.info("{} iterations per epoch".format(len(trainloader)))

    iter_num = 0
    max_epoch = max_iterations // len(trainloader) + 1
    best_performance = 0.0
    iterator = tqdm(range(max_epoch), ncols=70)
    for epoch_num in iterator:
        for i_batch, sampled_batch in enumerate(trainloader):

            volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
            volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
            labeled_volume_batch = volume_batch[:args.labeled_bs]
            unlabeled_volume_batch = volume_batch[args.labeled_bs:]

            # ICT mix factors
            ict_mix_factors = np.random.beta(
                args.ict_alpha, args.ict_alpha, size=(args.labeled_bs//2, 1, 1, 1, 1))
            ict_mix_factors = torch.tensor(
                ict_mix_factors, dtype=torch.float).cuda()
            unlabeled_volume_batch_0 = unlabeled_volume_batch[0:1, ...]
            unlabeled_volume_batch_1 = unlabeled_volume_batch[1:2, ...]

            # Mix images
            batch_ux_mixed = unlabeled_volume_batch_0 * \
                (1.0 - ict_mix_factors) + \
                unlabeled_volume_batch_1 * ict_mix_factors
            input_volume_batch = torch.cat(
                [labeled_volume_batch, batch_ux_mixed], dim=0)
            outputs = model(input_volume_batch)
            outputs_soft = torch.softmax(outputs, dim=1)
            with torch.no_grad():
                ema_output_ux0 = torch.softmax(
                    ema_model(unlabeled_volume_batch_0), dim=1)
                ema_output_ux1 = torch.softmax(
                    ema_model(unlabeled_volume_batch_1), dim=1)
                batch_pred_mixed = ema_output_ux0 * \
                    (1.0 - ict_mix_factors) + ema_output_ux1 * ict_mix_factors

            loss_ce = ce_loss(outputs[:args.labeled_bs],
                              label_batch[:args.labeled_bs][:])
            loss_dice = dice_loss(
                outputs_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1))
            supervised_loss = 0.5 * (loss_dice + loss_ce)
            consistency_weight = get_current_consistency_weight(iter_num//150)
            consistency_loss = torch.mean(
                (outputs_soft[args.labeled_bs:] - batch_pred_mixed)**2)
            loss = supervised_loss + consistency_weight * consistency_loss
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            update_ema_variables(model, ema_model, args.ema_decay, iter_num)

            lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr_

            iter_num = iter_num + 1
            writer.add_scalar('info/lr', lr_, iter_num)
            writer.add_scalar('info/total_loss', loss, iter_num)
            writer.add_scalar('info/loss_ce', loss_ce, iter_num)
            writer.add_scalar('info/loss_dice', loss_dice, iter_num)
            writer.add_scalar('info/consistency_loss',
                              consistency_loss, iter_num)
            writer.add_scalar('info/consistency_weight',
                              consistency_weight, iter_num)

            logging.info(
                'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' %
                (iter_num, loss.item(), loss_ce.item(), loss_dice.item()))
            writer.add_scalar('loss/loss', loss, iter_num)

            if iter_num % 20 == 0:
                image = volume_batch[0, 0:1, :, :, 20:61:10].permute(
                    3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=True)
                writer.add_image('train/Image', grid_image, iter_num)

                image = outputs_soft[0, 1:2, :, :, 20:61:10].permute(
                    3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Predicted_label',
                                 grid_image, iter_num)

                image = label_batch[0, :, :, 20:61:10].unsqueeze(
                    0).permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Groundtruth_label',
                                 grid_image, iter_num)

            if iter_num > 0 and iter_num % 200 == 0:
                model.eval()
                avg_metric = test_all_case(
                    model, args.root_path, test_list="val.txt", num_classes=2, patch_size=args.patch_size,
                    stride_xy=32, stride_z=32)
                if avg_metric[:, 0].mean() > best_performance:
                    best_performance = avg_metric[:, 0].mean()
                    save_mode_path = os.path.join(snapshot_path,
                                                  'iter_{}_dice_{}.pth'.format(
                                                      iter_num, round(best_performance, 4)))
                    save_best = os.path.join(snapshot_path,
                                             '{}_best_model.pth'.format(args.model))
                    torch.save(model.state_dict(), save_mode_path)
                    torch.save(model.state_dict(), save_best)

                writer.add_scalar('info/val_dice_score',
                                  avg_metric[0, 0], iter_num)
                writer.add_scalar('info/val_hd95',
                                  avg_metric[0, 1], iter_num)
                logging.info(
                    'iteration %d : dice_score : %f hd95 : %f' % (iter_num, avg_metric[0, 0].mean(), avg_metric[0, 1].mean()))
                model.train()

            if iter_num % 3000 == 0:
                save_mode_path = os.path.join(
                    snapshot_path, 'iter_' + str(iter_num) + '.pth')
                torch.save(model.state_dict(), save_mode_path)
                logging.info("save model to {}".format(save_mode_path))

            if iter_num >= max_iterations:
                break
        if iter_num >= max_iterations:
            iterator.close()
            break
    writer.close()
    return "Training Finished!"
def train(args, snapshot_path):
    num_classes = 3
    base_lr = args.base_lr
    train_data_path = args.root_path
    batch_size = args.batch_size
    max_iterations = args.max_iterations

    net = unet_3D_dv_semi(n_classes=num_classes, in_channels=1)
    model = net.cuda()

    db_train = BraTS2019(base_dir=train_data_path,
                         split='train',
                         num=None,
                         transform=transforms.Compose([
                             RandomRotFlip(),
                             RandomCrop(args.patch_size),
                             ToTensor(),
                         ]))

    def worker_init_fn(worker_id):
        random.seed(args.seed + worker_id)

    labeled_idxs = list(range(0, args.labeled_num))
    unlabeled_idxs = list(range(args.labeled_num, args.total_labeled_num))
    batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs,
                                          batch_size,
                                          batch_size - args.labeled_bs)

    trainloader = DataLoader(db_train,
                             batch_sampler=batch_sampler,
                             num_workers=4,
                             pin_memory=True,
                             worker_init_fn=worker_init_fn)

    model.train()

    optimizer = optim.SGD(model.parameters(),
                          lr=base_lr,
                          momentum=0.9,
                          weight_decay=0.0001)
    ce_loss = CrossEntropyLoss()
    dice_loss = losses.DiceLoss(num_classes)

    writer = SummaryWriter(snapshot_path + '/log')
    logging.info("{} iterations per epoch".format(len(trainloader)))

    iter_num = 0
    max_epoch = max_iterations // len(trainloader) + 1
    best_performance = 0.0
    iterator = tqdm(range(max_epoch), ncols=70)
    kl_distance = nn.KLDivLoss(reduction='none')
    for epoch_num in iterator:
        for i_batch, sampled_batch in enumerate(trainloader):

            volume_batch, label_batch = sampled_batch['image'], sampled_batch[
                'label']
            volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
            unlabeled_volume_batch = volume_batch[args.labeled_bs:]

            outputs_aux1, outputs_aux2, outputs_aux3, outputs_aux4, = model(
                volume_batch)
            outputs_aux1_soft = torch.softmax(outputs_aux1, dim=1)
            outputs_aux2_soft = torch.softmax(outputs_aux2, dim=1)
            outputs_aux3_soft = torch.softmax(outputs_aux3, dim=1)
            outputs_aux4_soft = torch.softmax(outputs_aux4, dim=1)

            loss_ce_aux1 = ce_loss(outputs_aux1[:args.labeled_bs],
                                   label_batch[:args.labeled_bs])
            loss_ce_aux2 = ce_loss(outputs_aux2[:args.labeled_bs],
                                   label_batch[:args.labeled_bs])
            loss_ce_aux3 = ce_loss(outputs_aux3[:args.labeled_bs],
                                   label_batch[:args.labeled_bs])
            loss_ce_aux4 = ce_loss(outputs_aux4[:args.labeled_bs],
                                   label_batch[:args.labeled_bs])

            loss_dice_aux1 = dice_loss(
                outputs_aux1_soft[:args.labeled_bs],
                label_batch[:args.labeled_bs].unsqueeze(1))
            loss_dice_aux2 = dice_loss(
                outputs_aux2_soft[:args.labeled_bs],
                label_batch[:args.labeled_bs].unsqueeze(1))
            loss_dice_aux3 = dice_loss(
                outputs_aux3_soft[:args.labeled_bs],
                label_batch[:args.labeled_bs].unsqueeze(1))
            loss_dice_aux4 = dice_loss(
                outputs_aux4_soft[:args.labeled_bs],
                label_batch[:args.labeled_bs].unsqueeze(1))

            supervised_loss = (loss_ce_aux1 + loss_ce_aux2 + loss_ce_aux3 +
                               loss_ce_aux4 + loss_dice_aux1 + loss_dice_aux2 +
                               loss_dice_aux3 + loss_dice_aux4) / 8

            preds = (outputs_aux1_soft + outputs_aux2_soft +
                     outputs_aux3_soft + outputs_aux4_soft) / 4

            variance_aux1 = torch.sum(kl_distance(
                torch.log(outputs_aux1_soft[args.labeled_bs:]),
                preds[args.labeled_bs:]),
                                      dim=1,
                                      keepdim=True)
            exp_variance_aux1 = torch.exp(-variance_aux1)

            variance_aux2 = torch.sum(kl_distance(
                torch.log(outputs_aux2_soft[args.labeled_bs:]),
                preds[args.labeled_bs:]),
                                      dim=1,
                                      keepdim=True)
            exp_variance_aux2 = torch.exp(-variance_aux2)

            variance_aux3 = torch.sum(kl_distance(
                torch.log(outputs_aux3_soft[args.labeled_bs:]),
                preds[args.labeled_bs:]),
                                      dim=1,
                                      keepdim=True)
            exp_variance_aux3 = torch.exp(-variance_aux3)

            variance_aux4 = torch.sum(kl_distance(
                torch.log(outputs_aux4_soft[args.labeled_bs:]),
                preds[args.labeled_bs:]),
                                      dim=1,
                                      keepdim=True)
            exp_variance_aux4 = torch.exp(-variance_aux4)

            consistency_weight = get_current_consistency_weight(iter_num //
                                                                150)

            consistency_dist_aux1 = (preds[args.labeled_bs:] -
                                     outputs_aux1_soft[args.labeled_bs:])**2
            consistency_loss_aux1 = torch.mean(
                consistency_dist_aux1 *
                exp_variance_aux1) / (torch.mean(exp_variance_aux1) +
                                      1e-8) + torch.mean(variance_aux1)

            consistency_dist_aux2 = (preds[args.labeled_bs:] -
                                     outputs_aux2_soft[args.labeled_bs:])**2
            consistency_loss_aux2 = torch.mean(
                consistency_dist_aux2 *
                exp_variance_aux2) / (torch.mean(exp_variance_aux2) +
                                      1e-8) + torch.mean(variance_aux2)

            consistency_dist_aux3 = (preds[args.labeled_bs:] -
                                     outputs_aux3_soft[args.labeled_bs:])**2
            consistency_loss_aux3 = torch.mean(
                consistency_dist_aux3 *
                exp_variance_aux3) / (torch.mean(exp_variance_aux3) +
                                      1e-8) + torch.mean(variance_aux3)

            consistency_dist_aux4 = (preds[args.labeled_bs:] -
                                     outputs_aux4_soft[args.labeled_bs:])**2
            consistency_loss_aux4 = torch.mean(
                consistency_dist_aux4 *
                exp_variance_aux4) / (torch.mean(exp_variance_aux4) +
                                      1e-8) + torch.mean(variance_aux4)

            consistency_loss = (consistency_loss_aux1 + consistency_loss_aux2 +
                                consistency_loss_aux3 +
                                consistency_loss_aux4) / 4
            loss = supervised_loss + consistency_weight * consistency_loss
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            lr_ = base_lr * (1.0 - iter_num / max_iterations)**0.9
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr_

            iter_num = iter_num + 1
            writer.add_scalar('info/lr', lr_, iter_num)
            writer.add_scalar('info/total_loss', loss, iter_num)
            writer.add_scalar('info/supervised_loss', supervised_loss,
                              iter_num)
            writer.add_scalar('info/consistency_loss', consistency_loss,
                              iter_num)
            writer.add_scalar('info/consistency_weight', consistency_weight,
                              iter_num)

            logging.info('iteration %d : loss : %f, supervised_loss: %f' %
                         (iter_num, loss.item(), supervised_loss.item()))

            if iter_num % 20 == 0:
                image = volume_batch[0, 0:1, :, :,
                                     20:61:10].permute(3, 0, 1,
                                                       2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=True)
                writer.add_image('train/Image', grid_image, iter_num)

                image = torch.argmax(
                    outputs_aux1_soft,
                    dim=1, keepdim=True)[0, 0:1, :, :, 20:61:10].permute(
                        3, 0, 1, 2).repeat(1, 3, 1, 1) * 100
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Predicted_label', grid_image, iter_num)

                image = label_batch[0, :, :, 20:61:10].unsqueeze(0).permute(
                    3, 0, 1, 2).repeat(1, 3, 1, 1) * 100
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Groundtruth_label', grid_image,
                                 iter_num)

            if iter_num > 0 and iter_num % 200 == 0:
                model.eval()
                avg_metric = test_all_case(model,
                                           args.root_path,
                                           test_list="val.txt",
                                           num_classes=num_classes,
                                           patch_size=args.patch_size,
                                           stride_xy=64,
                                           stride_z=64)
                if avg_metric[:, 0].mean() > best_performance:
                    best_performance = avg_metric[:, 0].mean()
                    save_mode_path = os.path.join(
                        snapshot_path, 'iter_{}_dice_{}.pth'.format(
                            iter_num, round(best_performance, 4)))
                    save_best = os.path.join(
                        snapshot_path, '{}_best_model.pth'.format(args.model))
                    torch.save(model.state_dict(), save_mode_path)
                    torch.save(model.state_dict(), save_best)
                for cls in range(1, num_classes):
                    writer.add_scalar('info/val_cls_{}_dice_score'.format(cls),
                                      avg_metric[cls - 1, 0], iter_num)
                    writer.add_scalar('info/val_cls_{}_hd95'.format(cls),
                                      avg_metric[cls - 1, 1], iter_num)
                writer.add_scalar('info/val_mean_dice_score',
                                  avg_metric[:, 0].mean(), iter_num)
                writer.add_scalar('info/val_mean_hd95',
                                  avg_metric[:, 1].mean(), iter_num)
                logging.info('iteration %d : dice_score : %f hd95 : %f' %
                             (iter_num, avg_metric[:, 0].mean(),
                              avg_metric[:, 1].mean()))
                model.train()

            if iter_num % 3000 == 0:
                save_mode_path = os.path.join(snapshot_path,
                                              'iter_' + str(iter_num) + '.pth')
                torch.save(model.state_dict(), save_mode_path)
                logging.info("save model to {}".format(save_mode_path))

            if iter_num >= max_iterations:
                break
        if iter_num >= max_iterations:
            iterator.close()
            break
    writer.close()
    return "Training Finished!"
Пример #5
0
def train(args, snapshot_path):
    base_lr = args.base_lr
    train_data_path = args.root_path
    batch_size = args.batch_size
    max_iterations = args.max_iterations
    num_classes = 2
    model = net_factory_3d(net_type=args.model, in_chns=1, class_num=num_classes)
    db_train = BraTS2019(base_dir=train_data_path,
                         split='train',
                         num=args.labeled_num,
                         transform=transforms.Compose([
                             RandomRotFlip(),
                             RandomCrop(args.patch_size),
                             ToTensor(),
                         ]))

    def worker_init_fn(worker_id):
        random.seed(args.seed + worker_id)

    trainloader = DataLoader(db_train, batch_size=batch_size, shuffle=True,
                             num_workers=16, pin_memory=True, worker_init_fn=worker_init_fn)

    model.train()

    optimizer = optim.SGD(model.parameters(), lr=base_lr,
                          momentum=0.9, weight_decay=0.0001)
    ce_loss = CrossEntropyLoss()
    dice_loss = losses.DiceLoss(2)

    writer = SummaryWriter(snapshot_path + '/log')
    logging.info("{} iterations per epoch".format(len(trainloader)))

    iter_num = 0
    max_epoch = max_iterations // len(trainloader) + 1
    best_performance = 0.0
    iterator = tqdm(range(max_epoch), ncols=70)
    for epoch_num in iterator:
        for i_batch, sampled_batch in enumerate(trainloader):

            volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
            volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()

            outputs = model(volume_batch)
            outputs_soft = torch.softmax(outputs, dim=1)

            loss_ce = ce_loss(outputs, label_batch[:])
            loss_dice = dice_loss(outputs_soft, label_batch.unsqueeze(1))
            loss = 0.5 * (loss_dice + loss_ce)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr_

            iter_num = iter_num + 1
            writer.add_scalar('info/lr', lr_, iter_num)
            writer.add_scalar('info/total_loss', loss, iter_num)
            writer.add_scalar('info/loss_ce', loss_ce, iter_num)
            writer.add_scalar('info/loss_dice', loss_dice, iter_num)

            logging.info(
                'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' %
                (iter_num, loss.item(), loss_ce.item(), loss_dice.item()))
            writer.add_scalar('loss/loss', loss, iter_num)

            if iter_num % 20 == 0:
                image = volume_batch[0, 0:1, :, :, 20:61:10].permute(
                    3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=True)
                writer.add_image('train/Image', grid_image, iter_num)

                image = outputs_soft[0, 1:2, :, :, 20:61:10].permute(
                    3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Predicted_label',
                                 grid_image, iter_num)

                image = label_batch[0, :, :, 20:61:10].unsqueeze(
                    0).permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Groundtruth_label',
                                 grid_image, iter_num)

            if iter_num > 0 and iter_num % 200 == 0:
                model.eval()
                avg_metric = test_all_case(
                    model, args.root_path, test_list="val.txt", num_classes=2, patch_size=args.patch_size,
                    stride_xy=64, stride_z=64)
                if avg_metric[:, 0].mean() > best_performance:
                    best_performance = avg_metric[:, 0].mean()
                    save_mode_path = os.path.join(snapshot_path,
                                                  'iter_{}_dice_{}.pth'.format(
                                                      iter_num, round(best_performance, 4)))
                    save_best = os.path.join(snapshot_path,
                                             '{}_best_model.pth'.format(args.model))
                    torch.save(model.state_dict(), save_mode_path)
                    torch.save(model.state_dict(), save_best)

                writer.add_scalar('info/val_dice_score',
                                  avg_metric[0, 0], iter_num)
                writer.add_scalar('info/val_hd95',
                                  avg_metric[0, 1], iter_num)
                logging.info(
                    'iteration %d : dice_score : %f hd95 : %f' % (iter_num, avg_metric[0, 0].mean(), avg_metric[0, 1].mean()))
                model.train()

            if iter_num % 3000 == 0:
                save_mode_path = os.path.join(
                    snapshot_path, 'iter_' + str(iter_num) + '.pth')
                torch.save(model.state_dict(), save_mode_path)
                logging.info("save model to {}".format(save_mode_path))

            if iter_num >= max_iterations:
                break
        if iter_num >= max_iterations:
            iterator.close()
            break
    writer.close()
    return "Training Finished!"
def train(args, snapshot_path):
    base_lr = args.base_lr
    train_data_path = args.root_path
    batch_size = args.batch_size
    max_iterations = args.max_iterations
    num_classes = 2

    net1 = net_factory_3d(net_type=args.model,
                          in_chns=1,
                          class_num=num_classes).cuda()
    net2 = net_factory_3d(net_type=args.model,
                          in_chns=1,
                          class_num=num_classes).cuda()
    model1 = kaiming_normal_init_weight(net1)
    model2 = xavier_normal_init_weight(net2)
    model1.train()
    model2.train()

    db_train = BraTS2019(base_dir=train_data_path,
                         split='train',
                         num=None,
                         transform=transforms.Compose([
                             RandomRotFlip(),
                             RandomCrop(args.patch_size),
                             ToTensor(),
                         ]))

    def worker_init_fn(worker_id):
        random.seed(args.seed + worker_id)

    labeled_idxs = list(range(0, args.labeled_num))
    unlabeled_idxs = list(range(args.labeled_num, 250))
    batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs,
                                          batch_size,
                                          batch_size - args.labeled_bs)

    trainloader = DataLoader(db_train,
                             batch_sampler=batch_sampler,
                             num_workers=4,
                             pin_memory=True,
                             worker_init_fn=worker_init_fn)

    optimizer1 = optim.SGD(model1.parameters(),
                           lr=base_lr,
                           momentum=0.9,
                           weight_decay=0.0001)
    optimizer2 = optim.SGD(model2.parameters(),
                           lr=base_lr,
                           momentum=0.9,
                           weight_decay=0.0001)
    best_performance1 = 0.0
    best_performance2 = 0.0
    iter_num = 0
    ce_loss = CrossEntropyLoss()
    dice_loss = losses.DiceLoss(num_classes)

    writer = SummaryWriter(snapshot_path + '/log')
    logging.info("{} iterations per epoch".format(len(trainloader)))

    max_epoch = max_iterations // len(trainloader) + 1
    iterator = tqdm(range(max_epoch), ncols=70)
    for epoch_num in iterator:
        for i_batch, sampled_batch in enumerate(trainloader):

            volume_batch, label_batch = sampled_batch['image'], sampled_batch[
                'label']
            volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()

            outputs1 = model1(volume_batch)
            outputs_soft1 = torch.softmax(outputs1, dim=1)

            outputs2 = model2(volume_batch)
            outputs_soft2 = torch.softmax(outputs2, dim=1)
            consistency_weight = get_current_consistency_weight(iter_num //
                                                                150)

            loss1 = 0.5 * (
                ce_loss(outputs1[:args.labeled_bs],
                        label_batch[:][:args.labeled_bs].long()) +
                dice_loss(outputs_soft1[:args.labeled_bs],
                          label_batch[:args.labeled_bs].unsqueeze(1)))
            loss2 = 0.5 * (
                ce_loss(outputs2[:args.labeled_bs],
                        label_batch[:][:args.labeled_bs].long()) +
                dice_loss(outputs_soft2[:args.labeled_bs],
                          label_batch[:args.labeled_bs].unsqueeze(1)))

            pseudo_outputs1 = torch.argmax(
                outputs_soft1[args.labeled_bs:].detach(), dim=1, keepdim=False)
            pseudo_outputs2 = torch.argmax(
                outputs_soft2[args.labeled_bs:].detach(), dim=1, keepdim=False)

            pseudo_supervision1 = ce_loss(outputs1[args.labeled_bs:],
                                          pseudo_outputs2)
            pseudo_supervision2 = ce_loss(outputs2[args.labeled_bs:],
                                          pseudo_outputs1)

            model1_loss = loss1 + consistency_weight * pseudo_supervision1
            model2_loss = loss2 + consistency_weight * pseudo_supervision2

            loss = model1_loss + model2_loss

            optimizer1.zero_grad()
            optimizer2.zero_grad()

            loss.backward()

            optimizer1.step()
            optimizer2.step()

            iter_num = iter_num + 1

            lr_ = base_lr * (1.0 - iter_num / max_iterations)**0.9
            for param_group1 in optimizer1.param_groups:
                param_group1['lr'] = lr_
            for param_group2 in optimizer2.param_groups:
                param_group2['lr'] = lr_

            writer.add_scalar('lr', lr_, iter_num)
            writer.add_scalar('consistency_weight/consistency_weight',
                              consistency_weight, iter_num)
            writer.add_scalar('loss/model1_loss', model1_loss, iter_num)
            writer.add_scalar('loss/model2_loss', model2_loss, iter_num)
            logging.info('iteration %d : model1 loss : %f model2 loss : %f' %
                         (iter_num, model1_loss.item(), model2_loss.item()))
            if iter_num % 50 == 0:
                image = volume_batch[0, 0:1, :, :,
                                     20:61:10].permute(3, 0, 1,
                                                       2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=True)
                writer.add_image('train/Image', grid_image, iter_num)

                image = outputs_soft1[0, 0:1, :, :,
                                      20:61:10].permute(3, 0, 1,
                                                        2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Model1_Predicted_label', grid_image,
                                 iter_num)

                image = outputs_soft2[0, 0:1, :, :,
                                      20:61:10].permute(3, 0, 1,
                                                        2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Model2_Predicted_label', grid_image,
                                 iter_num)

                image = label_batch[0, :, :, 20:61:10].unsqueeze(0).permute(
                    3, 0, 1, 2).repeat(1, 3, 1, 1)
                grid_image = make_grid(image, 5, normalize=False)
                writer.add_image('train/Groundtruth_label', grid_image,
                                 iter_num)

            if iter_num > 0 and iter_num % 200 == 0:
                model1.eval()
                avg_metric1 = test_all_case(model1,
                                            args.root_path,
                                            test_list="val.txt",
                                            num_classes=2,
                                            patch_size=args.patch_size,
                                            stride_xy=64,
                                            stride_z=64)
                if avg_metric1[:, 0].mean() > best_performance1:
                    best_performance1 = avg_metric1[:, 0].mean()
                    save_mode_path = os.path.join(
                        snapshot_path, 'model1_iter_{}_dice_{}.pth'.format(
                            iter_num, round(best_performance1, 4)))
                    save_best = os.path.join(
                        snapshot_path, '{}_best_model1.pth'.format(args.model))
                    torch.save(model1.state_dict(), save_mode_path)
                    torch.save(model1.state_dict(), save_best)

                writer.add_scalar('info/model1_val_dice_score',
                                  avg_metric1[0, 0], iter_num)
                writer.add_scalar('info/model1_val_hd95', avg_metric1[0, 1],
                                  iter_num)
                logging.info(
                    'iteration %d : model1_dice_score : %f model1_hd95 : %f' %
                    (iter_num, avg_metric1[0, 0].mean(),
                     avg_metric1[0, 1].mean()))
                model1.train()

                model2.eval()
                avg_metric2 = test_all_case(model2,
                                            args.root_path,
                                            test_list="val.txt",
                                            num_classes=2,
                                            patch_size=args.patch_size,
                                            stride_xy=64,
                                            stride_z=64)
                if avg_metric2[:, 0].mean() > best_performance2:
                    best_performance2 = avg_metric2[:, 0].mean()
                    save_mode_path = os.path.join(
                        snapshot_path, 'model2_iter_{}_dice_{}.pth'.format(
                            iter_num, round(best_performance2, 4)))
                    save_best = os.path.join(
                        snapshot_path, '{}_best_model2.pth'.format(args.model))
                    torch.save(model2.state_dict(), save_mode_path)
                    torch.save(model2.state_dict(), save_best)

                writer.add_scalar('info/model2_val_dice_score',
                                  avg_metric2[0, 0], iter_num)
                writer.add_scalar('info/model2_val_hd95', avg_metric2[0, 1],
                                  iter_num)
                logging.info(
                    'iteration %d : model2_dice_score : %f model2_hd95 : %f' %
                    (iter_num, avg_metric2[0, 0].mean(),
                     avg_metric2[0, 1].mean()))
                model2.train()

            if iter_num % 3000 == 0:
                save_mode_path = os.path.join(
                    snapshot_path, 'model1_iter_' + str(iter_num) + '.pth')
                torch.save(model1.state_dict(), save_mode_path)
                logging.info("save model1 to {}".format(save_mode_path))

                save_mode_path = os.path.join(
                    snapshot_path, 'model2_iter_' + str(iter_num) + '.pth')
                torch.save(model2.state_dict(), save_mode_path)
                logging.info("save model2 to {}".format(save_mode_path))

            if iter_num >= max_iterations:
                break
            time1 = time.time()
        if iter_num >= max_iterations:
            iterator.close()
            break
    writer.close()