Пример #1
0
    def __init__(self, root, isTrain=True):
        self.images_root = os.path.join(root, 'img')
        self.labels_root = os.path.join(root, 'gt')
        self.list_root = os.path.join(root, 'list')

        # print('image root = ', self.images_root)
        # print('labels root = ', self.labels_root)

        if isTrain:
            list_path = os.path.join(self.list_root, 'train_aug.txt')
            self.input_transform = transforms.Compose([
                transforms.RandomRotation(10),  # 随机旋转
                transforms.CenterCrop(256),
                transforms.RandomHorizontalFlip(),  # 随机翻转
                transforms.ToTensor(),
                transforms.Normalize([.485, .456, .406], [.229, .224, .225])
            ])
            self.target_transform = transforms.Compose(
                [transforms.CenterCrop(256),
                 transform.ToLabel()])
        else:
            list_path = os.path.join(self.list_root, 'val.txt')
            self.input_transform = transforms.Compose([
                transforms.CenterCrop(256),
                transforms.ToTensor(),
                transforms.Normalize([.485, .456, .406], [.229, .224, .225])
            ])
            self.target_transform = transforms.Compose(
                [transforms.CenterCrop(256),
                 transform.ToLabel()])

        self.filenames = [i_id.strip() for i_id in open(list_path)]
    def val_transform(self, rgb, depth):
        s = self.getFocalScale()

        depth = np.asfarray(
            depth, dtype='float32'
        )  #This used to be the last step, not sure if it goes here?
        if (self.augArgs.varScale):  #Variable global scale simulation
            scale = self.getDepthGroup()
            depth_np = depth * scale
        else:
            depth_np = depth

        if (self.augArgs.varFocus):
            transform = transforms.Compose([
                transforms.Crop(130, 10, 240, 1200),
                transforms.Resize(
                    s
                ),  #Resize both images without correcting the depth values
                transforms.CenterCrop(self.output_size),
            ])
        else:
            transform = transforms.Compose([
                transforms.Crop(130, 10, 240, 1200),
                transforms.CenterCrop(self.output_size),
            ])

        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)
        return rgb_np, depth_np
    def val_transform(self, rgb, depth):
        s = self.getFocalScale()

        if (self.augArgs.varScale):  #Variable global scale simulation
            scale = self.getDepthGroup()
            depth_np = depth * scale
        else:
            depth_np = depth

        if (self.augArgs.varFocus):
            transform = transforms.Compose([
                transforms.Resize(240.0 / iheight),
                transforms.Resize(
                    s
                ),  #Resize both images without correcting the depth values
                transforms.CenterCrop(self.output_size),
            ])
        else:
            transform = transforms.Compose([
                transforms.Resize(240.0 / iheight),
                transforms.CenterCrop(self.output_size),
            ])

        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Пример #4
0
    def train_transform(self, rgb, depth, rgb_near):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip
        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(
                250.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        rgb_near_np = None
        if rgb_near is not None:
            rgb_near_np = transform(rgb_near)
            rgb_near_np = np.asfarray(rgb_near_np, dtype='float') / 255
        depth_np = transform(depth_np)

        self.K = TransfromIntrinsics(self.K, (250.0 / iheight) * s,
                                     self.output_size)
        return rgb_np, depth_np, rgb_near_np
Пример #5
0
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth  #/ s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(
                240.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            #transforms.Rotate(angle),
            #transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])

        rgb_np = transform(rgb)
        #rgb_np = self.color_jitter(rgb_np) # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255

        depth_np = transform(depth_np)
        depth_np = np.asfarray(depth_np, dtype='float')

        if self.depth_16:
            depth_np = depth_np / self.depth_16_max
        else:
            depth_np = (255 - depth_np) / 255

        return rgb_np, depth_np
    def train_transform(self, rgb, depth):
        s = self.getFocalScale()

        if (self.augArgs.varFocus):  #Variable focal length simulation
            depth_np = depth
        else:
            depth_np = depth / s  #Correct for focal length

        if (self.augArgs.varScale):  #Variable global scale simulation
            scale = self.getDepthGroup()
            depth_np = depth_np * scale

        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(
                250.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Пример #7
0
    def val_transform(self, rgb, depth):
        """
        [Reference]
        https://github.com/fangchangma/sparse-to-dense.pytorch/blob/master/dataloaders/nyu_dataloader.py

        Args:
            rgb (np.array): RGB image (shape=[H,W,3])
            depth (np.array): Depth image (shape=[H,W])

        Returns:
            torch.Tensor: Tranformed RGB image
            torch.Tensor: Transformed Depth image
            np.array: Transformed RGB image without color jitter (for 2D mesh creation)
        """
        transform = transforms.Compose([
            transforms.Resize(240.0 / RAW_HEIGHT),
            transforms.CenterCrop(self.img_size),
        ])

        # Apply this transform to rgb/depth
        rgb_np_orig = transform(rgb)
        rgb_np_for_edge = np.asfarray(rgb_np_orig)  # Used for mesh creation
        rgb_np = np.asfarray(rgb_np_orig) / 255
        depth_np = transform(depth)

        return rgb_np, depth_np, rgb_np_for_edge
    def train_transform(self, rgb, depth):
        #s = np.random.uniform(1.0, 1.5)  # random scaling
        #depth_np = depth / s
        s = self.getFocalScale()

        if (self.augArgs.varFocus):  #Variable focal length simulation
            depth_np = depth
        else:
            depth_np = depth / s  #Correct for focal length

        if (self.augArgs.varScale):  #Variable global scale simulation
            scale = self.getDepthGroup()
            depth_np = depth_np * scale

        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Crop(130, 10, 240, 1200),
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        # Scipy affine_transform produced RuntimeError when the depth map was
        # given as a 'numpy.ndarray'
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Пример #9
0
    def train_transform(self, rgb, depth):
        scale = np.random.uniform(low=1, high=1.5)
        depth = depth / scale

        angle = np.random.uniform(-5.0, 5.0)
        should_flip = np.random.uniform(0.0, 1.0) < 0.5

        h_offset = int((768 - 228) * np.random.uniform(0.0, 1.0))
        v_offset = int((1024 - 304) * np.random.uniform(0.0, 1.0))

        base_transform = transforms.Compose([
            transforms.Resize(250 / iheight),
            transforms.Rotate(angle),
            transforms.Resize(scale),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(should_flip),
        ])

        rgb = base_transform(rgb)
        rgb = self.color_jitter(rgb)
        rgb = rgb / 255.0

        depth = base_transform(depth)

        return (rgb, depth)
Пример #10
0
    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (rgb, depth) the raw data.
        """
        raw_rgb, raw_depth, _ = self.__getraw__(index)
        if self.transform is not None:
            rgb_np, depth_np, rgb_np_for_edge = self.transform(raw_rgb, raw_depth)
        else:
            raise RuntimeError("transform not defined")

        input_tensor = to_tensor(rgb_np)
        depth_tensor = to_tensor(depth_np).unsqueeze(0)  # [1,H,W]

        # Extract mesh
        base_mesh = self.mesh_extractor(np.uint8(rgb_np_for_edge))

        # Preserve original resolution for evaluation/visualization
        orig_transform = transforms.Compose([
            transforms.CenterCrop((456, 608)),
        ])
        orig_input_tensor = orig_transform(raw_rgb)
        orig_depth_tensor = orig_transform(raw_depth)

        # To tensor
        orig_input_tensor = to_tensor(orig_input_tensor)
        orig_depth_tensor = to_tensor(orig_depth_tensor).unsqueeze(0)

        # Estimated depthmaps (added for evaluation)
        est_depth_np = np.asfarray(self.mat_depth[index], dtype='float')  # numpy
        est_depth_tensor = to_tensor(est_depth_np).unsqueeze(0)

        return input_tensor, depth_tensor, base_mesh, orig_input_tensor, orig_depth_tensor, est_depth_tensor
    def train_transform(self, im, gt):
        im = np.array(im).astype(np.float32)
        gt = np.array(gt).astype(np.float32)

        s = np.random.uniform(1.0, 1.5)  # random scaling
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip
        color_jitter = my_transforms.ColorJitter(0.4, 0.4, 0.4)

        transform = my_transforms.Compose([
            my_transforms.Crop(130, 10, 240, 1200),
            my_transforms.Resize(460 / 240, interpolation='bilinear'),
            my_transforms.Rotate(angle),
            my_transforms.Resize(s),
            my_transforms.CenterCrop(self.size),
            my_transforms.HorizontalFlip(do_flip)
        ])

        im_ = transform(im)
        im_ = color_jitter(im_)

        gt_ = transform(gt)

        im_ = np.array(im_).astype(np.float32)
        gt_ = np.array(gt_).astype(np.float32)

        im_ /= 255.0
        gt_ /= 100.0 * s
        im_ = to_tensor(im_)
        gt_ = to_tensor(gt_)

        gt_ = gt_.unsqueeze(0)

        return im_, gt_
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        random_size = (int(s * 224), int(s * 224))
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        # transform = torchvision.transforms.Compose([
        #     torchvision.transforms.Resize(self.output_size), # this is for computational efficiency, since rotation can be slow
        #    torchvision.transforms.RandomRotation(angle),
        #    torchvision.transforms.Resize(random_size),
        #    torchvision.transforms.CenterCrop(self.output_size),
        #    torchvision.transforms.RandomHorizontalFlip(do_flip)
        #])
        transform2 = transforms.Compose([
            transforms.Resize(
                250.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform2(rgb)
        #rgb_n = Image.fromarray(np.uint8(rgb_np * 255))
        #rgb_np = self.color_jitter(rgb_n) # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform2(depth_np)
        #depth_np = np.asfarray(depth_np, dtype='float') / 255

        return rgb_np, depth_np
Пример #13
0
    def val_transform(self, rgb):
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255

        return rgb_np
Пример #14
0
def image_transform(rgb, depth):
    depth_frame_converted = np.asfarray(depth.clip(0, 6000),
                                        dtype='float') / 1000
    depth_array = depth_frame_converted.reshape((424, 512),
                                                order='C')

    rgb_transform = transforms.Compose([
        transforms.Resize([240, 426]),
        transforms.CenterCrop((228, 304)),
    ])
    depth_transform = transforms.Compose([
        transforms.Resize([240, 320]),
        transforms.CenterCrop((228, 304)),
    ])
    rgb_frame = rgb_transform(rgb)
    rgb_np = np.asfarray(rgb_frame, dtype='float') / 255
    depth_np = depth_transform(depth_array)

    return rgb_np, depth_np
Пример #15
0
def val_transform(rgb, depth):
    depth_np = depth
    transform = transforms.Compose([
        transforms.Resize(240.0 / iheight),
        transforms.CenterCrop(output_size),
    ])
    rgb_np = transform(rgb)
    rgb_np = np.asfarray(rgb_np, dtype='float') / 255
    depth_np = transform(depth_np)

    return rgb_np, depth_np
    def seq_transform(self, attrib_list, is_validation):

        iheight = attrib_list['gt_depth'].shape[0]
        iwidth = attrib_list['gt_depth'].shape[1]

        transform = transforms.Compose([
            transforms.Resize(
                240.0 / iheight),  # this is for computational efficiency,
            transforms.CenterCrop(self.output_size)
        ])

        attrib_np = dict()
        network_max_range = 10.0  # 10 is arbitrary. the network only converge in a especific range
        if 'scale' in attrib_list and attrib_list['scale'] > 0:
            scale = 1.0 / attrib_list['scale']
            attrib_np['scale'] = attrib_list['scale']
        else:
            if 'fd' in attrib_list:
                minmax_image = transform(attrib_list['fd'])
                max_depth = max(minmax_image.max(), 1.0)
            if 'kor' in attrib_list:
                minmax_image = transform(attrib_list['kor'])
                max_depth = max(minmax_image.max(), 1.0)
            else:
                max_depth = 50

            scale = network_max_range / max_depth
            attrib_np['scale'] = 1.0 / scale

        for key, value in attrib_list.items():
            if key not in Modality.no_transform:
                attrib_np[key] = transform(value)
            else:
                attrib_np[key] = value
            if key in Modality.need_divider:
                attrib_np[key] = scale * attrib_np[key]
            elif key in Modality.image_size_weight_names:
                attrib_np[key] = attrib_np[key] / (
                    iwidth * 1.5)  # 1.5 about sqrt(2)- square's diagonal

        if 'rgb' in attrib_np:
            if not is_validation:
                attrib_np['rgb'] = self.color_jitter(
                    attrib_np['rgb'])  # random color jittering
            attrib_np['rgb'] = (np.asfarray(attrib_np['rgb'], dtype='float') /
                                255).transpose(
                                    (2, 0,
                                     1))  # all channels need to have C x H x W

        if 'grey' in attrib_np:
            attrib_np['grey'] = np.expand_dims(
                np.asfarray(attrib_np['grey'], dtype='float') / 255, axis=0)

        return attrib_np
Пример #17
0
    def val_transform(self, rgb, depth, pose):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(250.0 / iheight),
            transforms.CenterCrop((228, 304)),
            transforms.Resize(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np, pose
    def val_transform(self, rgb, depth):
        depth_np = depth / (self.depth_divider)
        transform = transforms.Compose([
            transforms.Crop(130, 10, 240, 1200),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Пример #19
0
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Crop(130, 10, 220, 1200),
            transforms.CenterCrop(self.output_size)
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255  #Why do this??
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Пример #20
0
    def val_transform(self, rgb, depth, random_seed):
        np.random.seed(random_seed)

        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Crop(0, 20, 750, 2000),
            transforms.Resize(500 / 750),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        # for compare with Eigen's paper
        depth_np = depth_data_transforms(depth_np)

        return rgb_np, depth_np
Пример #23
0
    def validate_transform(self, rgb, depth):
        h_offset = int((768 - 228) * np.random.uniform(0.0, 1.0))
        v_offset = int((1024 - 304) * np.random.uniform(0.0, 1.0))

        base_transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])

        rgb = base_transform(rgb)
        rgb = rgb / 255.0
        depth = base_transform(depth)

        return (rgb, depth)
Пример #24
0
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            #transform.Resize(250.0 / iheight),
            transforms.Crop(130, 10, 240, 1200),
            transforms.CenterCrop(self.output_size),
            transforms.Resize(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Пример #25
0
    def val_transform(self, rgb, depth):
        iheight = rgb.shape[0]
        depth_np = depth
        transform = transforms.Compose([
            #transforms.Resize((iheight,iwidth)),
            transforms.Resize(250.0 / iheight),
            transforms.CenterCrop((228, 304)),
            transforms.Resize(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
    def _val_transform(self, rgb, sparse_depth, depth_gt):
        transform = transforms.Compose([
            transforms.Crop(*self._road_crop),
            transforms.CenterCrop(self.output_size),
        ])
        rgb = transform(rgb)
        rgb = np.asfarray(rgb, dtype='float') / 255

        sparse_depth = np.asfarray(sparse_depth, dtype='float32')
        sparse_depth = transform(sparse_depth)

        depth_gt = np.asfarray(depth_gt, dtype='float32')
        depth_gt = transform(depth_gt)

        return rgb, sparse_depth, depth_gt
Пример #27
0
    def val_transform(self, rgb, depth, rgb_near):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        rgb_near_np = None
        if rgb_near is not None:
            rgb_near_np = transform(rgb_near)
            rgb_near_np = np.asfarray(rgb_near_np, dtype='float') / 255
        depth_np = transform(depth_np)
        self.K = TransfromIntrinsics(self.K, (240.0 / iheight),
                                     self.output_size)

        return rgb_np, depth_np, rgb_near_np
    def val_transform(self, attrib_list):

        iheight = attrib_list['gt_depth'].shape[0]
        iwidth = attrib_list['gt_depth'].shape[1]

        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])

        attrib_np = dict()

        if self.depth_divider == 0:
            if 'fd' in attrib_list:
                minmax_image = transform(attrib_list['fd'])
                max_depth = max(minmax_image.max(), 1.0)
            if 'kor' in attrib_list:
                minmax_image = transform(attrib_list['kor'])
                max_depth = max(minmax_image.max(), 1.0)
            else:
                max_depth = 50

            scale = 10.0 / max_depth  # 10 is arbitrary. the network only converge in a especific range
        else:
            scale = 1.0 / self.depth_divider

        attrib_np['scale'] = 1.0 / scale

        for key, value in attrib_list.items():
            attrib_np[key] = transform(value)
            if key in Modality.need_divider:  #['gt_depth','fd','kor','kde','kgt','dor','dde', 'd3dwde','d3dwor','dvor','dvde','dvgt']:
                attrib_np[key] = scale * attrib_np[
                    key]  #(attrib_np[key] - min_depth+0.01) / (max_depth - min_depth)
            elif key in Modality.image_size_weight_names:
                attrib_np[key] = attrib_np[key] / (
                    iwidth * 1.5)  #1.5 about sqrt(2)- square's diagonal
            elif key == 'rgb':
                attrib_np[key] = (np.asfarray(attrib_np[key], dtype='float') /
                                  255).transpose((2, 0, 1))
            elif key == 'grey':
                attrib_np[key] = np.expand_dims(
                    np.asfarray(attrib_np[key], dtype='float') / 255, axis=0)

        return attrib_np
Пример #29
0
    def train_transform(self, im, gt, mask):
        im = np.array(im).astype(np.float32)
        im = cv2.resize(im, (512, 256), interpolation=cv2.INTER_AREA)
        gt = cv2.resize(gt, (512, 256), interpolation=cv2.INTER_AREA)
        mask = cv2.resize(mask, (512, 256), interpolation=cv2.INTER_AREA)

        # h,w,c = im.shape
        # th, tw = 256,512
        # x1 = random.randint(0, w - tw)
        # y1 = random.randint(0, h - th)
        # img = im[y1:y1 + th, x1:x1 + tw, :]
        # gt = gt[y1:y1 + th, x1:x1 + tw]
        # mask = mask[y1:y1 + th, x1:x1 + tw]
        s = np.random.uniform(1.0, 1.5)  # random scaling
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip
        color_jitter = my_transforms.ColorJitter(0.4, 0.4, 0.4)

        transform = my_transforms.Compose([
            my_transforms.Rotate(angle),
            my_transforms.Resize(s),
            my_transforms.CenterCrop(self.size),
            my_transforms.HorizontalFlip(do_flip)
        ])

        im_ = transform(im)
        im_ = color_jitter(im_)

        gt_ = transform(gt)
        mask_ = transform(mask)
        im_ = np.array(im_).astype(np.float32)
        gt_ = np.array(gt_).astype(np.float32)
        mask_ = np.array(mask_).astype(np.float32)

        im_ /= 255.0
        gt_ /= s
        im_ = to_tensor(im_)
        gt_ = to_tensor(gt_)
        mask_ = to_tensor(mask_)

        gt_ = gt_.unsqueeze(0)
        mask_ = mask_.unsqueeze(0)

        return im_, gt_, mask_
Пример #30
0
    def val_transform(self, rgb, depth):
        depth_np = depth

        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])

        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255

        depth_np = transform(depth_np)
        depth_np = np.asfarray(depth_np, dtype='float')

        if self.depth_16:
            depth_np = depth_np / self.depth_16_max
        else:
            depth_np = (255 - depth_np) / 255

        return rgb_np, depth_np