def test(): datamanager = CT('CT_seq', train_ratio=0.8, expand_dim=3, seed=0) autoencoder = AutoEncoder(2, 128, 'AE') trainer = Trainer(64, datamanager, autoencoder, version='cnn', save_path='save/cnn_ae/cnn/', gpu='2') trainer.train(301) # # trainer.load_model() trainer.cal_loss()
def gru_test(): datamanager = CT('CT_seq', train_ratio=0.8, expand_dim=None, seed=0) autoencoder = AutoEncoder(2, 64, 'gru', [128], [128], 'AE') trainer = Trainer(64, datamanager, autoencoder, version='test', save_path='save/rnn_ae/gru/', gpu='1') # trainer.train(301) trainer.load_model() trainer.cal_loss()
def lstm_test(): datamanager = CT('CT_seq', train_ratio=0.8, expand_dim=3, seed=0) autoencoder = AutoEncoder(2, 64, 'lstm', [128], [128], 'AE') trainer = Trainer(64, datamanager, autoencoder, version='vae', save_path='save/crnn_vae/lstm/', gpu='1') trainer.train(301)
def rnn_test(): datamanager = CT('CT_seq', train_ratio=0.8, expand_dim=None, seed=0) autoencoder = AutoEncoder(2, 64, 'rnn', [128], [128], 'AE') trainer = Trainer(64, datamanager, autoencoder, version='vae', save_path='save/rnn_vae/rnn/', gpu='0') trainer.train(301)
def lstm_test(): datamanager = CT('CT_seq', train_ratio=0.8, expand_dim=3, seed=0) autoencoder = AutoEncoder(2, 64, 'lstm', [128], [128], 'AE') trainer = Trainer(64, datamanager, autoencoder, version='lstm', save_path='save/resrnn_ae/lstm/', gpu='2') trainer.train(301) # # trainer.load_model() trainer.cal_loss()