def test_geometry_not_converted(self): log = logging.getLogger(__name__) geojson = get_static_file('simple_input.geojson') geojson = json.loads(geojson) geojson = StringIO(json.dumps(geojson)) output_csv = convert(geojson, log) output_csv = pandas.read_csv(output_csv) self.assertFalse('geometry' in output_csv.columns)
def test_convert_ghana(self): log = logging.getLogger(__name__) geojson = open(join_static_path('ghana_input.geojson')) output_csv = convert(geojson, log) output_csv = pandas.read_csv(output_csv) expected_csv = pandas.read_csv(join_static_path('ghana_output.csv')) self.assertEqual(set(output_csv.columns), set(expected_csv.columns)) output_csv = output_csv[expected_csv.columns] pandas.util.testing.assert_frame_equal(output_csv, expected_csv)
def push_to_datastore(task_id, input, dry_run=False): '''Download and parse a resource push its data into CKAN's DataStore. An asynchronous job that gets a resource from CKAN, downloads the resource's data file and, if the data file has changed since last time, parses the data and posts it into CKAN's DataStore. :param dry_run: Fetch and parse the data file but don't actually post the data to the DataStore, instead return the data headers and rows that would have been posted. :type dry_run: boolean ''' handler = util.StoringHandler(task_id, input) logger = logging.getLogger(task_id) logger.addHandler(handler) logging_id = input.get("metadata", {}).get("resource_id", "None") formatter = logging.Formatter(f'[%(asctime)s] %(levelname)s - resource_id:{logging_id} - %(message)s') stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.propagate = False logger.setLevel(logging.DEBUG) validate_input(input) data = input['metadata'] ckan_url = data['ckan_url'] resource_id = data['resource_id'] api_key = input.get('api_key') try: time.sleep(1) # HACK: Give CKAN time to update the resource resource = get_resource(resource_id, ckan_url, api_key) except util.JobError as e: # try again in 5 seconds just incase CKAN is slow at adding resource time.sleep(5) resource = get_resource(resource_id, ckan_url, api_key) # check if the resource url_type is a datastore if resource.get('url_type') == 'datastore': logger.info('Dump files are managed with the Datastore API') return # check scheme url = resource.get('url') scheme = urlsplit(url).scheme if scheme not in ('http', 'https', 'ftp'): raise util.JobError( 'Only http, https, and ftp resources may be fetched.' ) # fetch the resource data logger.info('Fetching from: {0}'.format(url)) headers = {} if resource.get('url_type') == 'upload': # If this is an uploaded file to CKAN, authenticate the request, # otherwise we won't get file from private resources headers['Authorization'] = api_key try: response = requests.get( url, headers=headers, timeout=DOWNLOAD_TIMEOUT, verify=SSL_VERIFY, stream=True, # just gets the headers for now ) response.raise_for_status() cl = response.headers.get('content-length') try: if cl and int(cl) > MAX_CONTENT_LENGTH: raise util.JobError( 'Resource too large to download: {cl} > max ({max_cl}).' .format(cl=cl, max_cl=MAX_CONTENT_LENGTH)) except ValueError: pass tmp = tempfile.TemporaryFile() length = 0 m = hashlib.md5() for chunk in response.iter_content(CHUNK_SIZE): length += len(chunk) if length > MAX_CONTENT_LENGTH: raise util.JobError( 'Resource too large to process: {cl} > max ({max_cl}).' .format(cl=length, max_cl=MAX_CONTENT_LENGTH)) tmp.write(chunk) m.update(chunk) ct = response.headers.get('content-type', '').split(';', 1)[0] except requests.HTTPError as e: raise HTTPError( "DataPusher received a bad HTTP response when trying to download " "the data file", status_code=e.response.status_code, request_url=url, response=e.response.content) except requests.RequestException as e: raise HTTPError( message=str(e), status_code=None, request_url=url, response=None) file_hash = m.hexdigest() tmp.seek(0) if (resource.get('hash') == file_hash and not data.get('ignore_hash')): logger.info("The file hash hasn't changed: {hash}.".format( hash=file_hash)) return resource['hash'] = file_hash if resource.get('format').lower() == 'geojson': logger.info('Converting geojson to csv') tmp = geojson2csv.convert(tmp, logger) logger.info('Done.') ct = 'application/csv' try: table_set = messytables.any_tableset(tmp, mimetype=ct, extension=ct) except messytables.ReadError as e: logger.warning("First attempt to read table failed: {}".format(e)) # try again with format inferred from url if not table_set or not table_set.tables: tmp.seek(0) try: extension = resource.get('format') format = mimetypes.guess_type(url)[0] table_set = messytables.any_tableset(tmp, mimetype=format, extension=extension) except messytables.ReadError as e: raise util.JobError(e) if not table_set or not table_set.tables: raise util.JobError("Unable to read any tabular data from the file.") get_row_set = web.app.config.get('GET_ROW_SET', lambda table_set: table_set.tables.pop()) row_set = get_row_set(table_set) offset, headers = messytables.headers_guess(row_set.sample) existing = datastore_resource_exists(resource_id, api_key, ckan_url) existing_info = None if existing: existing_info = dict((f['id'], f['info']) for f in existing.get('fields', []) if 'info' in f) # Some headers might have been converted from strings to floats and such. headers = [str(header) for header in headers] row_set.register_processor(messytables.headers_processor(headers)) row_set.register_processor(messytables.offset_processor(offset + 1)) types = messytables.type_guess(row_set.sample, types=TYPES, strict=True) # override with types user requested if existing_info: types = [{ 'text': messytables.StringType(), 'numeric': messytables.DecimalType(), 'timestamp': messytables.DateUtilType(), }.get(existing_info.get(h, {}).get('type_override'), t) for t, h in zip(types, headers)] row_set.register_processor(messytables.types_processor(types)) headers = [header.strip() for header in headers if header.strip()] headers_set = set(headers) def row_iterator(): for row in row_set: data_row = {} for index, cell in enumerate(row): column_name = cell.column.strip() if column_name not in headers_set: continue if isinstance(cell.value, str): try: data_row[column_name] = cell.value.encode('latin-1').decode('utf-8') except (UnicodeDecodeError, UnicodeEncodeError): data_row[column_name] = cell.value else: data_row[column_name] = cell.value yield data_row result = row_iterator() ''' Delete existing datstore resource before proceeding. Otherwise 'datastore_create' will append to the existing datastore. And if the fields have significantly changed, it may also fail. ''' if existing: logger.info('Deleting "{res_id}" from datastore.'.format( res_id=resource_id)) delete_datastore_resource(resource_id, api_key, ckan_url) headers_dicts = [dict(id=field[0], type=TYPE_MAPPING[str(field[1])]) for field in zip(headers, types)] # Maintain data dictionaries from matching column names if existing_info: for h in headers_dicts: if h['id'] in existing_info: h['info'] = existing_info[h['id']] # create columns with types user requested type_override = existing_info[h['id']].get('type_override') if type_override in list(_TYPE_MAPPING.values()): h['type'] = type_override logger.info('Determined headers and types: {headers}'.format( headers=headers_dicts)) if dry_run: return headers_dicts, result count = 0 for i, chunk in enumerate(chunky(result, 250)): records, is_it_the_last_chunk = chunk count += len(records) logger.info('Saving chunk {number} {is_last}'.format( number=i, is_last='(last)' if is_it_the_last_chunk else '')) send_resource_to_datastore(resource, headers_dicts, records, is_it_the_last_chunk, api_key, ckan_url) logger.info('Successfully pushed {n} entries to "{res_id}".'.format( n=count, res_id=resource_id)) if data.get('set_url_type', False): update_resource(resource, api_key, ckan_url)