def get_tusimple(params): # augmentation flip = Flip() translate = Translate() rotate = Rotate() add_noise = AddGaussianNoise() change_intensity = ChangeIntensity() resize = Resize(rows=256, cols=512) norm_to_1 = NormalizeInstensity() whc_to_cwh = TransposeNumpyArray((2, 0, 1)) train_dataset = DatasetTusimple( root_path=params.train_root_url, json_files=params.train_json_file, transform=transforms.Compose([ flip, translate, rotate, add_noise, change_intensity, resize, norm_to_1, whc_to_cwh ]), ) val_dataset = DatasetTusimple( params.val_root_url, params.val_json_file, transform=transforms.Compose([resize, norm_to_1, whc_to_cwh]), ) return train_dataset, val_dataset
def sample(self): render = DrawLanemarks(draw_line=True) chw_to_hwc = TransposeNumpyArray((1, 2, 0)) for i in range(len(self.train_dataset)): each_sample = self.train_dataset[i] print(i, each_sample["image_path"]) img_src = cv2.imread(each_sample["image_path"]) each_sample = chw_to_hwc(each_sample) img = render(**each_sample) cv2.imshow("culane sample", img[:, :, ::-1]) cv2.imshow("original image", img_src) if cv2.waitKey(0) == 27: break
def __init__(self, ): print("usage examples:") print("python -m dataset.culane.test sample") print("python -m dataset.culane.test batch") print("python -m dataset.culane.test batch shuffle=False") flip = Flip(1.0) translate = Translate(1.0) rotate = Rotate(1.0) add_noise = AddGaussianNoise(1.0) change_intensity = ChangeIntensity(1.0) resize = Resize(rows=256, cols=512) hwc_to_chw = TransposeNumpyArray((2, 0, 1)) norm_to_1 = NormalizeInstensity() self.train_dataset = DatasetCollections(transform=transforms.Compose([ flip, translate, rotate, add_noise, change_intensity, resize, norm_to_1, hwc_to_chw ]), )
def __init__(self,): flip = Flip(1.0) translate = Translate(1.0) rotate = Rotate(1.0) add_noise = AddGaussianNoise(1.0) change_intensity = ChangeIntensity(1.0) resize = Resize(rows=256, cols=512) hwc_to_chw = TransposeNumpyArray((2, 0, 1)) norm_to_1 = NormalizeInstensity() json_file = ['label_data_0313.json', 'label_data_0531.json', 'label_data_0601.json'] self.train_dataset = DatasetTusimple(root_path="/media/zzhou/data-tusimple/lane_detection/train_set/", json_files=json_file, transform=transforms.Compose([flip, translate, rotate, add_noise, change_intensity, resize, norm_to_1, hwc_to_chw]),)
def on_tusimple(self): from dataset.tusimple import DatasetTusimple from configs.PINet import ParamsTuSimple dataset_param = ParamsTuSimple() resize = Resize(rows=256, cols=512) hwc_to_chw = TransposeNumpyArray((2, 0, 1)) norm_to_1 = NormalizeInstensity() dataset = DatasetTusimple( root_path=dataset_param.train_root_url, json_files=dataset_param.train_json_file, transform=transforms.Compose([resize, norm_to_1, hwc_to_chw]), ) for i in range(len(dataset)): sample = dataset[i] img_src = cv2.imread(sample["image_path"]) out_x, out_y = self.detector.test_on_image( np.array([sample["image"]])) vis_image = draw_points(out_x[0], out_y[0], img_src) cv2.imshow("sample", vis_image) cv2.imshow("original image", img_src) if cv2.waitKey(0) == 27: break
def on_culane(self, save=False): from dataset.culane import DatasetCULane from configs.PINet import ParamsCuLane dataset_param = ParamsCuLane() resize = Resize(rows=256, cols=512) hwc_to_chw = TransposeNumpyArray((2, 0, 1)) norm_to_1 = NormalizeInstensity() dataset = DatasetCULane( root_path=dataset_param.train_root_url, index_file=dataset_param.train_json_file, transform=transforms.Compose([resize, norm_to_1, hwc_to_chw]), ) if save: fourcc = cv2.VideoWriter_fourcc(*'MP4V') out = cv2.VideoWriter("./output.avi", fourcc, 20.0, (1640, 590)) else: out = None for i in range(len(dataset)): sample = dataset[i] img_src = cv2.imread(sample["image_path"]) out_x, out_y = self.detector.test_on_image( np.array([sample["image"]])) vis_image = draw_points(out_x[0], out_y[0], img_src, scale_x=1640 / 512, scale_y=590 / 256) if save: out.write(vis_image) cv2.imshow("sample", vis_image) cv2.imshow("original image", img_src) if cv2.waitKey(1) == 27: break if save: out.release()
def __init__(self,): print("usage examples:") print("python -m dataset.bdd100k.test sample") print("python -m dataset.bdd100k.test batch") print("python -m dataset.bdd100k.test batch shuffle=False") flip = Flip(1.0) translate = Translate(1.0) rotate = Rotate(1.0) add_noise = AddGaussianNoise(1.0) change_intensity = ChangeIntensity(1.0) resize = Resize(rows=256, cols=512) hwc_to_chw = TransposeNumpyArray((2, 0, 1)) norm_to_1 = NormalizeInstensity() self.train_dataset = DatasetBDD100K(root_path="/media/zzhou/data-BDD100K/bdd100k/", json_files="labels/bdd100k_labels_images_train.json", transform=transforms.Compose([flip, translate, rotate, add_noise, change_intensity, resize, norm_to_1, hwc_to_chw]), )