if __name__ == '__main__': trial_name = 'whale_segmentation' snippets = [ ["data", "dataset.py"], ] with dslib.trial.run_trial(trial_name=trial_name, trials_dir=trials_dir, description=[], snippets=snippets) as trial: train_ds, valid_ds = dataset.get_train_test_gens() with train_ds as train_gen, valid_ds as valid_gen: valid_chunk = valid_gen.next() import theano import treeano import canopy import canopy.sandbox.monitor_ui print "Making new model." model = make_model(params) print(model) network = model.network()
import dataset import tflib ''' CONSTANTS ''' BATCH_SIZE = 4 IMWIDTH = 200 IMHEIGHT = 280 TESTSPLIT = 0.20 TRIAL_NAME = 'whale1' tr, te = dataset.get_train_test_gens( anno_type='Head', rel_img_path='../imgs/', desired_output_size=(IMWIDTH, IMHEIGHT), test_split_percentage=TESTSPLIT, annotations_dir='../code/right_whale_hunt/annotations/', chunk_size=BATCH_SIZE) # input / output placeholders x_in = tf.placeholder("float", [BATCH_SIZE, IMWIDTH, IMHEIGHT, 3]) y_in = tf.placeholder("float", [BATCH_SIZE, IMWIDTH, IMHEIGHT, 1]) # keep probability for dropout keep_prob = tf.placeholder("float") conv1a = tflib.conv_bn_relu(x_in, kernel_size=[3, 3], out_filters=32, scope="conv1a", summarize=True) conv1a_do = tflib.dropout(conv1a, keep_prob)