Пример #1
0
def predict(desired_sample_rate, fragment_length, _log, seed, _seed, _config,
            predict_seconds, data_dir, batch_size, fragment_stride,
            nb_output_bins, learn_all_outputs, run_dir,
            predict_use_softmax_as_input, use_ulaw, predict_initial_input,
            **kwargs):
    checkpoint_dir = os.path.join(run_dir, 'checkpoints')
    last_checkpoint = sorted(os.listdir(checkpoint_dir))[-1]
    epoch = int(re.match(r'checkpoint\.(\d+?)-.*', last_checkpoint).group(1))
    _log.info('Using checkpoint from epoch: %s' % epoch)

    sample_dir = os.path.join(run_dir, 'samples')
    if not os.path.exists(sample_dir):
        os.mkdir(sample_dir)

    sample_name = make_sample_name(epoch)
    sample_filename = os.path.join(sample_dir, sample_name)

    _log.info('Saving to "%s"' % sample_filename)

    sample_stream = make_sample_stream(desired_sample_rate, sample_filename)

    model = build_model()
    model.load_weights(os.path.join(checkpoint_dir, last_checkpoint))

    if predict_initial_input is not '':
        _log.info('Taking first %d (%.2fs) from \'%s\' as initial input.' %
                  (fragment_length, fragment_length / desired_sample_rate,
                   predict_initial_input))
        wav = dataset.process_wav(desired_sample_rate, predict_initial_input,
                                  use_ulaw)
        outputs = list(dataset.one_hot(wav[0:fragment_length]))
    else:
        _log.info('Taking sample from test dataset as initial input.' %
                  (fragment_length, predict_initial_input))
        data_generators, _ = dataset.generators(data_dir, desired_sample_rate,
                                                fragment_length, batch_size,
                                                fragment_stride,
                                                nb_output_bins,
                                                learn_all_outputs, use_ulaw)
        outputs = list(data_generators['test'].next()[0][-1])

    # write_samples(sample_stream, outputs)
    for i in tqdm(xrange(int(desired_sample_rate * predict_seconds))):
        prediction_seed = np.expand_dims(
            np.array(outputs[i:i + fragment_length]), 0)
        output = model.predict(prediction_seed)
        output_dist = output[0][-1]
        output_val = draw_sample(output_dist)
        if predict_use_softmax_as_input:
            outputs.append(output_dist)
        else:
            outputs.append(output_val)
        write_samples(sample_stream, [output_val])

    sample_stream.close()

    _log.info("Done!")
Пример #2
0
def predict(desired_sample_rate, fragment_length, _log, seed, _seed, _config, predict_seconds, data_dir, batch_size,
            fragment_stride, nb_output_bins, learn_all_outputs, run_dir, predict_use_softmax_as_input, use_ulaw,
            predict_initial_input,
            **kwargs):
    fragment_length = compute_receptive_field()[0]
    _config['fragment_length'] = fragment_length

    checkpoint_dir = os.path.join(run_dir, 'checkpoints')
    last_checkpoint = sorted(os.listdir(checkpoint_dir))[-1]
    epoch = int(re.match(r'checkpoint\.(\d+?)-.*', last_checkpoint).group(1))
    _log.info('Using checkpoint from epoch: %s' % epoch)

    sample_dir = os.path.join(run_dir, 'samples')
    if not os.path.exists(sample_dir):
        os.makedirs(sample_dir, exist_ok=True)

    sample_name = make_sample_name(epoch)
    sample_filename = os.path.join(sample_dir, sample_name)

    _log.info('Saving to "%s"' % sample_filename)

    sample_stream = make_sample_stream(desired_sample_rate, sample_filename)

    model = build_model()
    model.load_weights(os.path.join(checkpoint_dir, last_checkpoint))
    model.summary()

    if predict_initial_input is None:
        outputs = list(dataset.one_hot(np.zeros(fragment_length) + nb_output_bins / 2))
    elif predict_initial_input != '':
        _log.info('Taking first %d (%.2fs) from \'%s\' as initial input.' % (
            fragment_length, fragment_length / desired_sample_rate, predict_initial_input))
        wav = dataset.process_wav(desired_sample_rate, predict_initial_input, use_ulaw)
        outputs = list(dataset.one_hot(wav[0:fragment_length]))
    else:
        _log.info('Taking sample from test dataset as initial input.')
        data_generators, _ = get_generators()
        outputs = list(data_generators['test'].next()[0][-1])

    # write_samples(sample_stream, outputs)
    warned_repetition = False
    for i in tqdm(range(int(desired_sample_rate * predict_seconds))):
        if not warned_repetition:
            if np.argmax(outputs[-1]) == np.argmax(outputs[-2]) and np.argmax(outputs[-2]) == np.argmax(outputs[-3]):
                warned_repetition = True
                _log.warning('Last three predicted outputs where %d' % np.argmax(outputs[-1]))
            else:
                warned_repetition = False
        prediction_seed = np.expand_dims(np.array(outputs[i:i + fragment_length]), 0)
        output = model.predict(prediction_seed)
        output_dist = output[0][-1]
        output_val = draw_sample(output_dist)
        if predict_use_softmax_as_input:
            outputs.append(output_dist)
        else:
            outputs.append(output_val)
        write_samples(sample_stream, [output_val])

    sample_stream.close()

    _log.info("Done!")
Пример #3
0
def predict(desired_sample_rate, fragment_length, _log, seed, _seed, _config, predict_seconds, data_dir, batch_size,
            fragment_stride, nb_output_bins, learn_all_outputs, run_dir, predict_use_softmax_as_input, use_ulaw,
            predict_initial_input,
            **kwargs):
    fragment_length = compute_receptive_field()[0]
    _config['fragment_length'] = fragment_length

    checkpoint_dir = os.path.join(run_dir, 'checkpoints')
    last_checkpoint = sorted(os.listdir(checkpoint_dir))[-1]
    epoch = int(re.match(r'checkpoint\.(\d+?)-.*', last_checkpoint).group(1))
    _log.info('Using checkpoint from epoch: %s' % epoch)

    sample_dir = os.path.join(run_dir, 'samples')
    if not os.path.exists(sample_dir):
        os.mkdir(sample_dir)

    sample_name = make_sample_name(epoch)
    sample_filename = os.path.join(sample_dir, sample_name)

    _log.info('Saving to "%s"' % sample_filename)

    sample_stream = make_sample_stream(desired_sample_rate, sample_filename)

    model = build_model()
    model.load_weights(os.path.join(checkpoint_dir, last_checkpoint))
    model.summary()

    if predict_initial_input is None:
        outputs = list(dataset.one_hot(np.zeros(fragment_length) + nb_output_bins / 2))
    elif predict_initial_input != '':
        _log.info('Taking first %d (%.2fs) from \'%s\' as initial input.' % (
            fragment_length, fragment_length / desired_sample_rate, predict_initial_input))
        wav = dataset.process_wav(desired_sample_rate, predict_initial_input, use_ulaw)
        outputs = list(dataset.one_hot(wav[0:fragment_length]))
    else:
        _log.info('Taking sample from test dataset as initial input.')
        data_generators, _ = get_generators()
        outputs = list(data_generators['test'].next()[0][-1])

    # write_samples(sample_stream, outputs)
    warned_repetition = False
    for i in tqdm(range(int(desired_sample_rate * predict_seconds))):
        if not warned_repetition:
            if np.argmax(outputs[-1]) == np.argmax(outputs[-2]) and np.argmax(outputs[-2]) == np.argmax(outputs[-3]):
                warned_repetition = True
                _log.warning('Last three predicted outputs where %d' % np.argmax(outputs[-1]))
            else:
                warned_repetition = False
        prediction_seed = np.expand_dims(np.array(outputs[i:i + fragment_length]), 0)
        output = model.predict(prediction_seed)
        output_dist = output[0][-1]
        output_val = draw_sample(output_dist)
        if predict_use_softmax_as_input:
            outputs.append(output_dist)
        else:
            outputs.append(output_val)
        write_samples(sample_stream, [output_val])

    sample_stream.close()

    _log.info("Done!")