def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if args.fp16:
        optim_level = Optimization.mxprO3
    else:
        optim_level = Optimization.mxprO0

    model_definition = toml.load(args.model_toml)
    dataset_vocab = model_definition['labels']['labels']
    ctc_vocab = add_blank_label(dataset_vocab)

    val_manifest = args.val_manifest
    featurizer_config = model_definition['input_eval']
    featurizer_config["optimization_level"] = optim_level

    if args.max_duration is not None:
        featurizer_config['max_duration'] = args.max_duration
    if args.pad_to is not None:
        featurizer_config['pad_to'] = args.pad_to if args.pad_to >= 0 else "max"

    data_layer = AudioToTextDataLayer(
        dataset_dir=args.dataset_dir,
        featurizer_config=featurizer_config,
        manifest_filepath=val_manifest,
        labels=dataset_vocab,
        batch_size=args.batch_size,
        pad_to_max=featurizer_config['pad_to'] == "max",
        shuffle=False,
        multi_gpu=False)

    audio_preprocessor = AudioPreprocessing(**featurizer_config)

    audio_preprocessor.eval()

    eval_transforms = torchvision.transforms.Compose([
        lambda xs: [*audio_preprocessor(xs[0:2]), *xs[2:]],
        lambda xs: [xs[0].permute(2, 0, 1), *xs[1:]],
    ])

    eval(
        data_layer=data_layer,
        audio_processor=eval_transforms,
        args=args)
Пример #2
0
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    #torch.set_default_dtype(torch.double)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.benchmark = args.cudnn_benchmark
    #print("CUDNN BENCHMARK ", args.cudnn_benchmark)
    if args.cuda:
        assert(torch.cuda.is_available())

    model_definition = toml.load(args.model_toml)
    dataset_vocab = model_definition['labels']['labels']
    ctc_vocab = add_blank_label(dataset_vocab)

    val_manifest = args.val_manifest
    featurizer_config = model_definition['input_eval']

    if args.pad_to is not None:
        featurizer_config['pad_to'] = args.pad_to if args.pad_to >= 0 else "max"

    #print('model_config')
    #print_dict(model_definition)
    #print('feature_config')
    #print_dict(featurizer_config)
    data_layer = None
    data_layer = AudioToTextDataLayer(
        dataset_dir=args.dataset_dir,
        featurizer_config=featurizer_config,
        manifest_filepath=val_manifest,
        labels=dataset_vocab,
        batch_size=args.batch_size,
        pad_to_max=featurizer_config['pad_to'] == "max",
        shuffle=False,
        sampler='bucket' #sort by duration 
        )
    audio_preprocessor = AudioPreprocessing(**featurizer_config)

    model = RNNT(
        feature_config=featurizer_config,
        rnnt=model_definition['rnnt'],
        num_classes=len(ctc_vocab)
    )
  
    if args.ckpt is not None and args.mode in[3]:
        #print("loading model from ", args.ckpt)
        checkpoint = torch.load(args.ckpt, map_location="cpu")
        model.load_state_dict(checkpoint['state_dict'], strict=False)

    audio_preprocessor.featurizer.normalize = "per_feature"

    if args.cuda:
        audio_preprocessor.cuda()
    audio_preprocessor.eval()

    eval_transforms = []
    if args.cuda:
        eval_transforms.append(lambda xs: [xs[0].cuda(),xs[1].cuda(), *xs[2:]])
   
    eval_transforms.append(lambda xs: [*audio_preprocessor(xs[0:2]), *xs[2:]])
    # These are just some very confusing transposes, that's all.
    # BxFxT -> TxBxF
    eval_transforms.append(lambda xs: [xs[0].permute(2, 0, 1), *xs[1:]])
    eval_transforms = torchvision.transforms.Compose(eval_transforms)

    if args.cuda:
        model.cuda()
    # Ideally, I would jit this as well... But this is just the constructor...
    greedy_decoder = RNNTGreedyDecoder(len(ctc_vocab) - 1, model)

    eval(
        data_layer=data_layer,
        audio_processor=eval_transforms,
        greedy_decoder=greedy_decoder,
        labels=ctc_vocab,
        args=args)
Пример #3
0
def get_pytorch_components_and_onnx(args):
    '''Returns PyTorch components used for inference
    '''
    model_definition = toml.load(args.model_toml)
    dataset_vocab = model_definition['labels']['labels']
    # Set up global labels for future vocab calls
    global _global_ctc_labels
    _global_ctc_labels = add_ctc_labels(dataset_vocab)
    featurizer_config = model_definition['input_eval']

    optim_level = 3 if args.pyt_fp16 else 0

    featurizer_config["optimization_level"] = optim_level

    audio_preprocessor = None
    onnx_path = None
    data_layer = None
    wav = None
    seq_len = None

    if args.max_duration is not None:
        featurizer_config['max_duration'] = args.max_duration
    if args.dataset_dir is not None:
        data_layer = AudioToTextDataLayer(dataset_dir=args.dataset_dir,
                                          featurizer_config=featurizer_config,
                                          manifest_filepath=args.val_manifest,
                                          labels=dataset_vocab,
                                          batch_size=args.batch_size,
                                          shuffle=False)
    if args.wav is not None:
        args.batch_size = 1
        wav, seq_len = audio_from_file(args.wav)
        if args.seq_len is None or args.seq_len == 0:
            args.seq_len = seq_len / (featurizer_config['sample_rate'] / 100)

    if args.transpose:
        featurizer_config["transpose_out"] = True
        model_definition["transpose_in"] = True

    model = JasperEncoderDecoder(jasper_model_definition=model_definition,
                                 feat_in=1024,
                                 num_classes=len(get_vocab()),
                                 transpose_in=args.transpose)
    model = model.cuda()
    model.eval()

    audio_preprocessor = AudioPreprocessing(**featurizer_config)
    audio_preprocessor = audio_preprocessor.cuda()
    audio_preprocessor.eval()

    if args.ckpt_path is not None:
        if os.path.isdir(args.ckpt_path):
            d_checkpoint = torch.load(args.ckpt_path + "/decoder.pt",
                                      map_location="cpu")
            e_checkpoint = torch.load(args.ckpt_path + "/encoder.pt",
                                      map_location="cpu")
            model.jasper_encoder.load_state_dict(e_checkpoint, strict=False)
            model.jasper_decoder.load_state_dict(d_checkpoint, strict=False)
        else:
            checkpoint = torch.load(args.ckpt_path, map_location="cpu")
            model.load_state_dict(checkpoint['state_dict'], strict=False)

    # if we are to produce engine, not run/create ONNX, postpone AMP initialization
    # (ONNX parser cannot handle mixed FP16 ONNX yet)
    if args.pyt_fp16 and args.engine_path is None:
        amp.initialize(models=model, opt_level=AmpOptimizations[optim_level])

    if args.make_onnx:
        if args.onnx_path is None or args.ckpt_path is None:
            raise Exception(
                "--ckpt_path, --onnx_path must be provided when using --make_onnx"
            )
        onnx_path = get_onnx(args.onnx_path, model, args)

    if args.pyt_fp16 and args.engine_path is not None:
        amp.initialize(models=model, opt_level=AmpOptimizations[optim_level])

    return {
        'data_layer': data_layer,
        'audio_preprocessor': audio_preprocessor,
        'acoustic_model': model,
        'input_wav': (wav, seq_len)
    }, onnx_path
Пример #4
0
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.benchmark = args.cudnn_benchmark
    assert (args.steps is None or args.steps > 5)
    print("CUDNN BENCHMARK ", args.cudnn_benchmark)
    assert (torch.cuda.is_available())

    if args.fp16:
        optim_level = Optimization.mxprO3
    else:
        optim_level = Optimization.mxprO0
    batch_size = args.batch_size

    jasper_model_definition = toml.load(args.model_toml)
    dataset_vocab = jasper_model_definition['labels']['labels']
    ctc_vocab = add_ctc_labels(dataset_vocab)

    val_manifest = args.val_manifest
    featurizer_config = jasper_model_definition['input_eval']
    featurizer_config["optimization_level"] = optim_level
    if args.max_duration is not None:
        featurizer_config['max_duration'] = args.max_duration
    if args.pad_to is not None:
        featurizer_config[
            'pad_to'] = args.pad_to if args.pad_to >= 0 else "max"

    print('model_config')
    print_dict(jasper_model_definition)
    print('feature_config')
    print_dict(featurizer_config)

    data_layer = AudioToTextDataLayer(
        dataset_dir=args.dataset_dir,
        featurizer_config=featurizer_config,
        manifest_filepath=val_manifest,
        labels=dataset_vocab,
        batch_size=batch_size,
        pad_to_max=featurizer_config['pad_to'] == "max",
        shuffle=False,
        multi_gpu=False)

    audio_preprocessor = AudioPreprocessing(**featurizer_config)

    encoderdecoder = JasperEncoderDecoder(
        jasper_model_definition=jasper_model_definition,
        feat_in=1024,
        num_classes=len(ctc_vocab))

    if args.ckpt is not None:
        print("loading model from ", args.ckpt)
        checkpoint = torch.load(args.ckpt, map_location="cpu")
        for k in audio_preprocessor.state_dict().keys():
            checkpoint['state_dict'][k] = checkpoint['state_dict'].pop(
                "audio_preprocessor." + k)
        audio_preprocessor.load_state_dict(checkpoint['state_dict'],
                                           strict=False)
        encoderdecoder.load_state_dict(checkpoint['state_dict'], strict=False)

    greedy_decoder = GreedyCTCDecoder()

    # print("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights()))

    N = len(data_layer)
    step_per_epoch = math.ceil(N / args.batch_size)

    print('-----------------')
    if args.steps is None:
        print('Have {0} examples to eval on.'.format(N))
        print('Have {0} steps / (gpu * epoch).'.format(step_per_epoch))
    else:
        print('Have {0} examples to eval on.'.format(args.steps *
                                                     args.batch_size))
        print('Have {0} steps / (gpu * epoch).'.format(args.steps))
    print('-----------------')

    audio_preprocessor.cuda()
    encoderdecoder.cuda()
    if args.fp16:
        encoderdecoder = amp.initialize(
            models=encoderdecoder, opt_level=AmpOptimizations[optim_level])

    eval(data_layer=data_layer,
         audio_processor=audio_preprocessor,
         encoderdecoder=encoderdecoder,
         greedy_decoder=greedy_decoder,
         labels=ctc_vocab,
         args=args)
Пример #5
0
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    assert(torch.cuda.is_available())
    torch.backends.cudnn.benchmark = args.cudnn

    # set up distributed training
    if args.local_rank is not None:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')

    multi_gpu = torch.distributed.is_initialized()
    if multi_gpu:
        print_once("DISTRIBUTED TRAINING with {} gpus".format(torch.distributed.get_world_size()))

    # define amp optimiation level
    if args.fp16:
        optim_level = Optimization.mxprO1
    else:
        optim_level = Optimization.mxprO0

    jasper_model_definition = toml.load(args.model_toml)
    dataset_vocab = jasper_model_definition['labels']['labels']
    ctc_vocab = add_ctc_labels(dataset_vocab)

    train_manifest = args.train_manifest 
    val_manifest = args.val_manifest 
    featurizer_config = jasper_model_definition['input']
    featurizer_config_eval = jasper_model_definition['input_eval']
    featurizer_config["optimization_level"] = optim_level
    featurizer_config_eval["optimization_level"] = optim_level

    sampler_type = featurizer_config.get("sampler", 'default')
    perturb_config = jasper_model_definition.get('perturb', None)
    if args.pad_to_max:
        assert(args.max_duration > 0)
        featurizer_config['max_duration'] = args.max_duration
        featurizer_config_eval['max_duration'] = args.max_duration
        featurizer_config['pad_to'] = "max"
        featurizer_config_eval['pad_to'] = "max"
    print_once('model_config')
    print_dict(jasper_model_definition)
         
    if args.gradient_accumulation_steps < 1:
        raise ValueError('Invalid gradient accumulation steps parameter {}'.format(args.gradient_accumulation_steps))
    if args.batch_size % args.gradient_accumulation_steps != 0:
        raise ValueError('gradient accumulation step {} is not divisible by batch size {}'.format(args.gradient_accumulation_steps, args.batch_size))


    data_layer = AudioToTextDataLayer(
                                    dataset_dir=args.dataset_dir,
                                    featurizer_config=featurizer_config,
                                    perturb_config=perturb_config,
                                    manifest_filepath=train_manifest,
                                    labels=dataset_vocab,
                                    batch_size=args.batch_size // args.gradient_accumulation_steps,
                                    multi_gpu=multi_gpu,
                                    pad_to_max=args.pad_to_max,
                                    sampler=sampler_type)

    data_layer_eval = AudioToTextDataLayer(
                                    dataset_dir=args.dataset_dir,
                                    featurizer_config=featurizer_config_eval,
                                    manifest_filepath=val_manifest,
                                    labels=dataset_vocab,
                                    batch_size=args.batch_size,
                                    multi_gpu=multi_gpu,
                                    pad_to_max=args.pad_to_max
                                    )
 
    model = Jasper(feature_config=featurizer_config, jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab))
 
    if args.ckpt is not None:
        print_once("loading model from {}".format(args.ckpt))
        checkpoint = torch.load(args.ckpt, map_location="cpu")
        model.load_state_dict(checkpoint['state_dict'], strict=True)
        args.start_epoch = checkpoint['epoch']
    else:
        args.start_epoch = 0

    ctc_loss = CTCLossNM( num_classes=len(ctc_vocab))
    greedy_decoder = GreedyCTCDecoder()

    print_once("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights()))
    print_once("Number of parameters in decode: {0}".format(model.jasper_decoder.num_weights()))

    N = len(data_layer)
    if sampler_type == 'default':
        args.step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))
    elif sampler_type == 'bucket':
        args.step_per_epoch = int(len(data_layer.sampler) / args.batch_size )
    
    print_once('-----------------')
    print_once('Have {0} examples to train on.'.format(N))
    print_once('Have {0} steps / (gpu * epoch).'.format(args.step_per_epoch))
    print_once('-----------------')

    fn_lr_policy = lambda s: lr_policy(args.lr, s, args.num_epochs * args.step_per_epoch) 


    model.cuda()

    if args.optimizer_kind == "novograd":
        optimizer = Novograd(model.parameters(),
                        lr=args.lr,
                        weight_decay=args.weight_decay)
    elif args.optimizer_kind == "adam":
        optimizer = AdamW(model.parameters(),
                        lr=args.lr,
                        weight_decay=args.weight_decay)
    else:
        raise ValueError("invalid optimizer choice: {}".format(args.optimizer_kind))


    if optim_level in AmpOptimizations:
        model, optimizer = amp.initialize(
            #lnw block for error
            #min_loss_scale=1.0,
            models=model,
            optimizers=optimizer,
            opt_level=AmpOptimizations[optim_level])
    
    if args.ckpt is not None:
        optimizer.load_state_dict(checkpoint['optimizer'])

    model = model_multi_gpu(model, multi_gpu)

    train(
        data_layer=data_layer,
        data_layer_eval=data_layer_eval, 
        model=model, 
        ctc_loss=ctc_loss, 
        greedy_decoder=greedy_decoder,
        optimizer=optimizer, 
        labels=ctc_vocab, 
        optim_level=optim_level,
        multi_gpu=multi_gpu,
        fn_lr_policy=fn_lr_policy if args.lr_decay else None,
        args=args)
Пример #6
0
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.benchmark = args.cudnn_benchmark

    multi_gpu = args.local_rank is not None
    if multi_gpu:
        print("DISTRIBUTED with ", torch.distributed.get_world_size())

    if args.fp16:
        optim_level = Optimization.mxprO3
    else:
        optim_level = Optimization.mxprO0

    model_definition = toml.load(args.model_toml)
    dataset_vocab = model_definition['labels']['labels']
    ctc_vocab = add_blank_label(dataset_vocab)

    val_manifest = args.val_manifest
    featurizer_config = model_definition['input_eval']
    featurizer_config["optimization_level"] = optim_level

    if args.max_duration is not None:
        featurizer_config['max_duration'] = args.max_duration
    if args.pad_to is not None:
        featurizer_config['pad_to'] = args.pad_to if args.pad_to >= 0 else "max"

    print('model_config')
    print_dict(model_definition)
    print('feature_config')
    print_dict(featurizer_config)
    data_layer = None
    
    if args.wav is None:
        data_layer = AudioToTextDataLayer(
            dataset_dir=args.dataset_dir, 
            featurizer_config=featurizer_config,
            manifest_filepath=val_manifest,
            # sampler='bucket',
            sort_by_duration=args.sort_by_duration,
            labels=dataset_vocab,
            batch_size=args.batch_size,
            pad_to_max=featurizer_config['pad_to'] == "max",
            shuffle=False,
            multi_gpu=multi_gpu)
    audio_preprocessor = AudioPreprocessing(**featurizer_config)

    #encoderdecoder = JasperEncoderDecoder(jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab))
    model = RNNT(
        feature_config=featurizer_config,
        rnnt=model_definition['rnnt'],
        num_classes=len(ctc_vocab)
    )

    if args.ckpt is not None:
        print("loading model from ", args.ckpt)
        checkpoint = torch.load(args.ckpt, map_location="cpu")
        model.load_state_dict(checkpoint['state_dict'], strict=False)

    if args.ipex:
        import intel_extension_for_pytorch as ipex
        from rnn import IPEXStackTime
        model.joint_net.eval()
        data_type = torch.bfloat16 if args.mix_precision else torch.float32
        if model.encoder["stack_time"].factor == 2:
            model.encoder["stack_time"] = IPEXStackTime(model.encoder["stack_time"].factor)
        model.joint_net = ipex.optimize(model.joint_net, dtype=data_type, auto_kernel_selection=True)
        model.prediction["embed"] = model.prediction["embed"].to(data_type)
        if args.jit:
            print("running jit path")
            model.joint_net.eval()
            if args.mix_precision:
                with torch.cpu.amp.autocast(), torch.no_grad():
                    model.joint_net = torch.jit.trace(model.joint_net, torch.randn(args.batch_size, 1, 1, model_definition['rnnt']['encoder_n_hidden'] + model_definition['rnnt']['pred_n_hidden']), check_trace=False)
            else:
                with torch.no_grad():
                    model.joint_net = torch.jit.trace(model.joint_net, torch.randn(args.batch_size, 1, 1, model_definition['rnnt']['encoder_n_hidden'] + model_definition['rnnt']['pred_n_hidden']), check_trace=False)
            model.joint_net = torch.jit.freeze(model.joint_net)
    else:
        model = model.to("cpu")

    #greedy_decoder = GreedyCTCDecoder()

    # print("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights()))
    if args.wav is None:
        N = len(data_layer)
        # step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_available() else torch.distributed.get_world_size())))
        step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))

        if args.steps is not None:
            print('-----------------')
            # print('Have {0} examples to eval on.'.format(args.steps * args.batch_size * (1 if not torch.distributed.is_available() else torch.distributed.get_world_size())))
            print('Have {0} examples to eval on.'.format(args.steps * args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))
            print('Have {0} warm up steps / (gpu * epoch).'.format(args.warm_up))
            print('Have {0} measure steps / (gpu * epoch).'.format(args.steps))
            print('-----------------')
        else:
            print('-----------------')
            print('Have {0} examples to eval on.'.format(N))
            print('Have {0} warm up steps / (gpu * epoch).'.format(args.warm_up))
            print('Have {0} measure steps / (gpu * epoch).'.format(step_per_epoch))
            print('-----------------')
    else:
            audio_preprocessor.featurizer.normalize = "per_feature"

    print ("audio_preprocessor.normalize: ", audio_preprocessor.featurizer.normalize)
    audio_preprocessor.eval()

    # eval_transforms = torchvision.transforms.Compose([
    #     lambda xs: [x.to(ipex.DEVICE) if args.ipex else x.cpu() for x in xs],
    #     lambda xs: [*audio_preprocessor(xs[0:2]), *xs[2:]],
    #     lambda xs: [xs[0].permute(2, 0, 1), *xs[1:]],
    # ])

    eval_transforms = torchvision.transforms.Compose([
        lambda xs: [x.cpu() for x in xs],
        lambda xs: [*audio_preprocessor(xs[0:2]), *xs[2:]],
        lambda xs: [xs[0].permute(2, 0, 1), *xs[1:]],
    ])

    model.eval()
    if args.ipex:
        ipex.nn.utils._model_convert.replace_lstm_with_ipex_lstm(model)

    greedy_decoder = RNNTGreedyDecoder(len(ctc_vocab) - 1, model.module if multi_gpu else model)

    eval(
        data_layer=data_layer,
        audio_processor=eval_transforms,
        encoderdecoder=model,
        greedy_decoder=greedy_decoder,
        labels=ctc_vocab,
        args=args,
        multi_gpu=multi_gpu)
Пример #7
0
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.benchmark = args.cudnn_benchmark
    print("CUDNN BENCHMARK ", args.cudnn_benchmark)
    if not args.cpu_run:
        assert(torch.cuda.is_available())

    if args.local_rank is not None:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
    multi_gpu = args.local_rank is not None
    if multi_gpu:
        print("DISTRIBUTED with ", torch.distributed.get_world_size())

    if args.fp16:
        optim_level = 3
    else:
        optim_level = 0

    jasper_model_definition = toml.load(args.model_toml)
    dataset_vocab = jasper_model_definition['labels']['labels']
    ctc_vocab = add_ctc_labels(dataset_vocab)

    val_manifest = args.val_manifest
    featurizer_config = jasper_model_definition['input_eval']
    featurizer_config["optimization_level"] = optim_level
    featurizer_config["fp16"] = args.fp16
    args.use_conv_mask = jasper_model_definition['encoder'].get('convmask', True)

    if args.masked_fill is not None:
        print("{} masked_fill".format("Enabling" if args.masked_fill else "Disabling"))
        jasper_model_definition["encoder"]["conv_mask"] = args.masked_fill

    if args.max_duration is not None:
        featurizer_config['max_duration'] = args.max_duration
    if args.pad_to is not None:
        featurizer_config['pad_to'] = args.pad_to 

    if featurizer_config['pad_to'] == "max":
        featurizer_config['pad_to'] = -1
        
    print('=== model_config ===')
    print_dict(jasper_model_definition)
    print()
    print('=== feature_config ===')
    print_dict(featurizer_config)
    print()
    data_layer = None
    
    if args.wav is None:
        data_layer = AudioToTextDataLayer(
            dataset_dir=args.dataset_dir, 
            featurizer_config=featurizer_config,
            manifest_filepath=val_manifest,
            labels=dataset_vocab,
            batch_size=args.batch_size,
            pad_to_max=featurizer_config['pad_to'] == -1,
            shuffle=False,
            multi_gpu=multi_gpu)
    audio_preprocessor = AudioPreprocessing(**featurizer_config)
    encoderdecoder = JasperEncoderDecoder(jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab))

    if args.ckpt is not None:
        print("loading model from ", args.ckpt)

        if os.path.isdir(args.ckpt):
            exit(0)
        else:
            checkpoint = torch.load(args.ckpt, map_location="cpu")
            for k in audio_preprocessor.state_dict().keys():
                checkpoint['state_dict'][k] = checkpoint['state_dict'].pop("audio_preprocessor." + k)
            audio_preprocessor.load_state_dict(checkpoint['state_dict'], strict=False)
            encoderdecoder.load_state_dict(checkpoint['state_dict'], strict=False)

    greedy_decoder = GreedyCTCDecoder()

    # print("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights()))
    if args.wav is None:
        N = len(data_layer)
        step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))

        if args.steps is not None:
            print('-----------------')
            print('Have {0} examples to eval on.'.format(args.steps * args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))
            print('Have {0} steps / (gpu * epoch).'.format(args.steps))
            print('-----------------')
        else:
            print('-----------------')
            print('Have {0} examples to eval on.'.format(N))
            print('Have {0} steps / (gpu * epoch).'.format(step_per_epoch))
            print('-----------------')

    print ("audio_preprocessor.normalize: ", audio_preprocessor.featurizer.normalize)
    if not args.cpu_run:
        audio_preprocessor.cuda()
        encoderdecoder.cuda()
    if args.fp16:
        encoderdecoder = amp.initialize( models=encoderdecoder,
                                         opt_level=AmpOptimizations[optim_level])

    encoderdecoder = model_multi_gpu(encoderdecoder, multi_gpu)
    audio_preprocessor.eval()
    encoderdecoder.eval()
    greedy_decoder.eval()
    
    eval(
        data_layer=data_layer,
        audio_processor=audio_preprocessor,
        encoderdecoder=encoderdecoder,
        greedy_decoder=greedy_decoder,
        labels=ctc_vocab,
        args=args,
        multi_gpu=multi_gpu)
Пример #8
0
def get_pytorch_components_and_onnx(args):
    '''Returns PyTorch components used for inference
    '''
    model_definition = toml.load(args.model_toml)
    dataset_vocab = model_definition['labels']['labels']
    # Set up global labels for future vocab calls
    global _global_ctc_labels
    _global_ctc_labels = add_ctc_labels(dataset_vocab)
    featurizer_config = model_definition['input_eval']

    optim_level = Optimization.mxprO3 if args.pyt_fp16 else Optimization.mxprO0

    featurizer_config["optimization_level"] = optim_level
    acoustic_model = None
    audio_preprocessor = None
    onnx_path = None
    data_layer = None
    wav = None
    seq_len = None
    dtype = torch.float

    if args.max_duration is not None:
        featurizer_config['max_duration'] = args.max_duration
    if args.dataset_dir is not None:
        data_layer = AudioToTextDataLayer(dataset_dir=args.dataset_dir,
                                          featurizer_config=featurizer_config,
                                          manifest_filepath=args.val_manifest,
                                          labels=dataset_vocab,
                                          batch_size=args.batch_size,
                                          shuffle=False)
    if args.wav is not None:
        args.batch_size = 1
        args.engine_batch_size = 1
        wav, seq_len = audio_from_file(args.wav)
        if args.seq_len is None or args.seq_len == 0:
            args.seq_len = seq_len / (featurizer_config['sample_rate'] / 100)

    model = Jasper(feature_config=featurizer_config,
                   jasper_model_definition=model_definition,
                   feat_in=1024,
                   num_classes=len(get_vocab()))

    model.cuda()
    model.eval()
    acoustic_model = model.acoustic_model
    audio_preprocessor = model.audio_preprocessor

    if args.ckpt_path is not None:
        checkpoint = torch.load(args.ckpt_path, map_location="cpu")
        model.load_state_dict(checkpoint['state_dict'], strict=False)

    if args.make_onnx:
        if args.onnx_path is None or acoustic_model is None:
            raise Exception(
                "--ckpt_path, --onnx_path must be provided when using --make_onnx"
            )
        onnx_path = get_onnx(args.onnx_path,
                             acoustic_model,
                             signal_shape=(args.engine_batch_size, 64,
                                           args.seq_len),
                             dtype=torch.float)

    if args.pyt_fp16:
        amp.initialize(models=acoustic_model,
                       opt_level=AmpOptimizations[optim_level])

    return {
        'data_layer': data_layer,
        'audio_preprocessor': audio_preprocessor,
        'acoustic_model': acoustic_model,
        'input_wav': (wav, seq_len)
    }, onnx_path
Пример #9
0
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.benchmark = args.cudnn_benchmark
    print("CUDNN BENCHMARK ", args.cudnn_benchmark)
    assert(torch.cuda.is_available())

    if args.local_rank is not None:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
    multi_gpu = args.local_rank is not None
    if multi_gpu:
        print("DISTRIBUTED with ", torch.distributed.get_world_size())

    if args.fp16:
        optim_level = Optimization.mxprO3
    else:
        optim_level = Optimization.mxprO0

    model_definition = toml.load(args.model_toml)
    dataset_vocab = model_definition['labels']['labels']
    ctc_vocab = add_blank_label(dataset_vocab)

    val_manifest = args.val_manifest
    featurizer_config = model_definition['input_eval']
    featurizer_config["optimization_level"] = optim_level

    if args.max_duration is not None:
        featurizer_config['max_duration'] = args.max_duration
    if args.pad_to is not None:
        featurizer_config['pad_to'] = args.pad_to if args.pad_to >= 0 else "max"

    print('model_config')
    print_dict(model_definition)
    print('feature_config')
    print_dict(featurizer_config)
    data_layer = None
    
    if args.wav is None:
        data_layer = AudioToTextDataLayer(
            dataset_dir=args.dataset_dir, 
            featurizer_config=featurizer_config,
            manifest_filepath=val_manifest,
            labels=dataset_vocab,
            batch_size=args.batch_size,
            pad_to_max=featurizer_config['pad_to'] == "max",
            shuffle=False,
            multi_gpu=multi_gpu)
    audio_preprocessor = AudioPreprocessing(**featurizer_config)

    #encoderdecoder = JasperEncoderDecoder(jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab))
    model = RNNT(
        feature_config=featurizer_config,
        rnnt=model_definition['rnnt'],
        num_classes=len(ctc_vocab)
    )

    if args.ckpt is not None:
        print("loading model from ", args.ckpt)
        checkpoint = torch.load(args.ckpt, map_location="cpu")
        model.load_state_dict(checkpoint['state_dict'], strict=False)

    #greedy_decoder = GreedyCTCDecoder()

    # print("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights()))
    if args.wav is None:
        N = len(data_layer)
        step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))

        if args.steps is not None:
            print('-----------------')
            print('Have {0} examples to eval on.'.format(args.steps * args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))
            print('Have {0} steps / (gpu * epoch).'.format(args.steps))
            print('-----------------')
        else:
            print('-----------------')
            print('Have {0} examples to eval on.'.format(N))
            print('Have {0} steps / (gpu * epoch).'.format(step_per_epoch))
            print('-----------------')
    else:
            audio_preprocessor.featurizer.normalize = "per_feature"

    print ("audio_preprocessor.normalize: ", audio_preprocessor.featurizer.normalize)
    audio_preprocessor.cuda()
    audio_preprocessor.eval()

    eval_transforms = torchvision.transforms.Compose([
        lambda xs: [x.cuda() for x in xs],
        lambda xs: [*audio_preprocessor(xs[0:2]), *xs[2:]],
        lambda xs: [xs[0].permute(2, 0, 1), *xs[1:]],
    ])

    model.cuda()
    if args.fp16:
        model = amp.initialize(
            models=model,
            opt_level=AmpOptimizations[optim_level])

    model = model_multi_gpu(model, multi_gpu)

    greedy_decoder = RNNTGreedyDecoder(len(ctc_vocab) - 1, model.module if multi_gpu else model)

    eval(
        data_layer=data_layer,
        audio_processor=eval_transforms,
        encoderdecoder=model,
        greedy_decoder=greedy_decoder,
        labels=ctc_vocab,
        args=args,
        multi_gpu=multi_gpu)
Пример #10
0
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    args.local_rank = os.environ.get('LOCAL_RANK', args.local_rank)
    # set up distributed training
    cpu_distributed_training = False
    if torch.distributed.is_available() and int(os.environ.get('PMI_SIZE', '0')) > 1:
        print('Distributed training with DDP')
        os.environ['RANK'] = os.environ.get('PMI_RANK', '0')
        os.environ['WORLD_SIZE'] = os.environ.get('PMI_SIZE', '1')
        if not 'MASTER_ADDR' in os.environ:
            os.environ['MASTER_ADDR'] = args.master_addr
        if not 'MASTER_PORT' in os.environ:
            os.environ['MASTER_PORT'] = args.port

        # Initialize the process group with ccl backend
        if args.backend == 'ccl':
            import torch_ccl
        dist.init_process_group(
                backend=args.backend                
        )
        cpu_distributed_training = True
        if torch.distributed.is_initialized():
            print("Torch distributed is initialized.")
            args.rank = torch.distributed.get_rank()
            args.world_size = torch.distributed.get_world_size()
        else:
            print("Torch distributed is not initialized.")
            args.rank = 0
            args.world_size = 1

    multi_gpu = False
    if multi_gpu:
        print_once("DISTRIBUTED TRAINING with {} gpus".format(torch.distributed.get_world_size()))

    optim_level = Optimization.mxprO0

    model_definition = toml.load(args.model_toml)
    dataset_vocab = model_definition['labels']['labels']
    ctc_vocab = add_blank_label(dataset_vocab)

    train_manifest = args.train_manifest
    val_manifest = args.val_manifest
    tst_manifest = args.tst_manifest
    featurizer_config = model_definition['input']
    featurizer_config_eval = model_definition['input_eval']
    featurizer_config["optimization_level"] = optim_level
    featurizer_config_eval["optimization_level"] = optim_level

    sampler_type = featurizer_config.get("sampler", 'default')
    perturb_config = model_definition.get('perturb', None)
    if args.pad_to_max:
        assert(args.max_duration > 0)
        featurizer_config['max_duration'] = args.max_duration
        featurizer_config_eval['max_duration'] = args.max_duration
        featurizer_config['pad_to'] = "max"
        featurizer_config_eval['pad_to'] = "max"
    print_once('model_config')
    print_dict(model_definition)

    if args.gradient_accumulation_steps < 1:
        raise ValueError('Invalid gradient accumulation steps parameter {}'.format(args.gradient_accumulation_steps))
    if args.batch_size % args.gradient_accumulation_steps != 0:
        raise ValueError('gradient accumulation step {} is not divisible by batch size {}'.format(args.gradient_accumulation_steps, args.batch_size))


    preprocessor = preprocessing.AudioPreprocessing(**featurizer_config)
    if args.cuda:
        preprocessor.cuda()
    else:
        preprocessor.cpu()

    augmentations = preprocessing.SpectrogramAugmentation(**featurizer_config)
    if args.cuda:
        augmentations.cuda()
    else:
        augmentations.cpu()

    train_transforms = torchvision.transforms.Compose([
        lambda xs: [x.cpu() for x in xs],
        lambda xs: [*preprocessor(xs[0:2]), *xs[2:]],
        lambda xs: [augmentations(xs[0]),   *xs[1:]],
        lambda xs: [xs[0].permute(2, 0, 1), *xs[1:]],
    ])

    eval_transforms = torchvision.transforms.Compose([
        lambda xs: [x.cpu() for x in xs],
        lambda xs: [*preprocessor(xs[0:2]), *xs[2:]],
        lambda xs: [xs[0].permute(2, 0, 1), *xs[1:]],
    ])

    data_layer = AudioToTextDataLayer(
                                    dataset_dir=args.dataset_dir,
                                    featurizer_config=featurizer_config,
                                    perturb_config=perturb_config,
                                    manifest_filepath=train_manifest,
                                    labels=dataset_vocab,
                                    batch_size=args.batch_size // args.gradient_accumulation_steps,
                                    multi_gpu=multi_gpu,
                                    pad_to_max=args.pad_to_max,
                                    sampler=sampler_type,
                                    cpu_distributed_training=cpu_distributed_training)

    eval_datasets = [(
        AudioToTextDataLayer(
            dataset_dir=args.dataset_dir,
            featurizer_config=featurizer_config_eval,
            manifest_filepath=val_manifest,
            labels=dataset_vocab,
            batch_size=args.eval_batch_size,
            multi_gpu=multi_gpu,
            pad_to_max=args.pad_to_max
        ),
        args.eval_frequency,
        'Eval clean',
    )]

    if tst_manifest:
        eval_datasets.append((
            AudioToTextDataLayer(
                dataset_dir=args.dataset_dir,
                featurizer_config=featurizer_config_eval,
                manifest_filepath=tst_manifest,
                labels=dataset_vocab,
                batch_size=args.eval_batch_size,
                multi_gpu=multi_gpu,
                pad_to_max=args.pad_to_max
            ),
            args.test_frequency,
            'Test other',
        ))

    model = RNNT(
        feature_config=featurizer_config,
        rnnt=model_definition['rnnt'],
        num_classes=len(ctc_vocab)
    )

    if args.ckpt is not None:
        print_once("loading model from {}".format(args.ckpt))
        checkpoint = torch.load(args.ckpt, map_location="cpu")
        model.load_state_dict(checkpoint['state_dict'], strict=True)
        args.start_epoch = checkpoint['epoch']
    else:
        args.start_epoch = 0

    loss_fn = RNNTLoss(blank=len(ctc_vocab) - 1)

    N = len(data_layer)
    if sampler_type == 'default':
        args.step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))
    elif sampler_type == 'bucket':
        args.step_per_epoch = int(len(data_layer.sampler) / args.batch_size )

    print_once('-----------------')
    print_once('Have {0} examples to train on.'.format(N))
    print_once('Have {0} steps / (gpu * epoch).'.format(args.step_per_epoch))
    print_once('-----------------')

    constant_lr_policy = lambda _: args.lr
    fn_lr_policy = constant_lr_policy
    if args.lr_decay:
        pre_decay_policy = fn_lr_policy
        fn_lr_policy = lambda s: lr_decay(args.num_epochs * args.step_per_epoch, s, pre_decay_policy(s))
    if args.lr_warmup:
        pre_warmup_policy = fn_lr_policy
        fn_lr_policy = lambda s: lr_warmup(args.lr_warmup, s, pre_warmup_policy(s) )

    if args.optimizer_kind == "novograd":
        optimizer = Novograd(model.parameters(),
                        lr=args.lr,
                        weight_decay=args.weight_decay)
    elif args.optimizer_kind == "adam":
        optimizer = AdamW(model.parameters(),
                        lr=args.lr,
                        weight_decay=args.weight_decay)
    else:
        raise ValueError("invalid optimizer choice: {}".format(args.optimizer_kind))

    if args.cuda and optim_level in AmpOptimizations:
        assert False, "not supported in ipex"

    if args.ckpt is not None:
        optimizer.load_state_dict(checkpoint['optimizer'])

    if args.ipex:
        if args.bf16:
            model, optimizer = ipex.optimize(model, dtype=torch.bfloat16, optimizer=optimizer)
            ipex.nn.utils._model_convert.replace_lstm_with_ipex_lstm(model)
        else:
            model, optimizer = ipex.optimize(model, dtype=torch.float32, optimizer=optimizer)
            ipex.nn.utils._model_convert.replace_lstm_with_ipex_lstm(model)

    if args.world_size > 1:
        device_ids = None
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=device_ids)

    print_once(model)
    print_once("# parameters: {}".format(sum(p.numel() for p in model.parameters())))
    greedy_decoder = RNNTGreedyDecoder(len(ctc_vocab) - 1, model.module if multi_gpu else model)

    if args.tb_path and args.local_rank == 0:
        logger = TensorBoardLogger(args.tb_path, model.module if multi_gpu else model, args.histogram)
    else:
        logger = DummyLogger()

    train(
        data_layer=data_layer,
        model=model,
        loss_fn=loss_fn,
        greedy_decoder=greedy_decoder,
        optimizer=optimizer,
        data_transforms=train_transforms,
        labels=ctc_vocab,
        optim_level=optim_level,
        multi_gpu=multi_gpu,
        fn_lr_policy=fn_lr_policy,
        evalutaion=evaluator(model, eval_transforms, loss_fn, greedy_decoder, ctc_vocab, eval_datasets, logger),
        logger=logger,
        args=args)
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    assert (args.steps is None or args.steps > 5)

    if args.cpu:
        device = torch.device('cpu')
    else:
        assert (torch.cuda.is_available())
        device = torch.device('cuda')
        torch.backends.cudnn.benchmark = args.cudnn_benchmark
        print("CUDNN BENCHMARK ", args.cudnn_benchmark)

    optim_level = 3 if args.amp else 0
    batch_size = args.batch_size

    jasper_model_definition = toml.load(args.model_toml)
    dataset_vocab = jasper_model_definition['labels']['labels']
    ctc_vocab = add_ctc_labels(dataset_vocab)

    val_manifest = args.val_manifest
    featurizer_config = jasper_model_definition['input_eval']
    featurizer_config["optimization_level"] = optim_level

    if args.max_duration is not None:
        featurizer_config['max_duration'] = args.max_duration

    # TORCHSCRIPT: Cant use mixed types. Using -1 for "max"
    if args.pad_to is not None:
        featurizer_config['pad_to'] = args.pad_to if args.pad_to >= 0 else -1

    if featurizer_config['pad_to'] == "max":
        featurizer_config['pad_to'] = -1

    args.use_conv_mask = jasper_model_definition['encoder'].get(
        'convmask', True)
    if args.use_conv_mask and args.torch_script:
        print(
            'WARNING: Masked convs currently not supported for TorchScript. Disabling.'
        )
        jasper_model_definition['encoder']['convmask'] = False

    print('model_config')
    print_dict(jasper_model_definition)
    print('feature_config')
    print_dict(featurizer_config)

    data_layer = AudioToTextDataLayer(
        dataset_dir=args.dataset_dir,
        featurizer_config=featurizer_config,
        manifest_filepath=val_manifest,
        labels=dataset_vocab,
        batch_size=batch_size,
        pad_to_max=featurizer_config['pad_to'] == -1,
        shuffle=False,
        multi_gpu=False)

    audio_preprocessor = AudioPreprocessing(**featurizer_config)

    encoderdecoder = JasperEncoderDecoder(
        jasper_model_definition=jasper_model_definition,
        feat_in=1024,
        num_classes=len(ctc_vocab))

    if args.ckpt is not None:
        print("loading model from ", args.ckpt)
        checkpoint = torch.load(args.ckpt, map_location="cpu")
        for k in audio_preprocessor.state_dict().keys():
            checkpoint['state_dict'][k] = checkpoint['state_dict'].pop(
                "audio_preprocessor." + k)
        audio_preprocessor.load_state_dict(checkpoint['state_dict'],
                                           strict=False)
        encoderdecoder.load_state_dict(checkpoint['state_dict'], strict=False)

    greedy_decoder = GreedyCTCDecoder()

    # print("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights()))

    N = len(data_layer)
    step_per_epoch = math.ceil(N / args.batch_size)

    print('-----------------')
    if args.steps is None:
        print('Have {0} examples to eval on.'.format(N))
        print('Have {0} steps / (epoch).'.format(step_per_epoch))
    else:
        print('Have {0} examples to eval on.'.format(args.steps *
                                                     args.batch_size))
        print('Have {0} steps / (epoch).'.format(args.steps))
    print('-----------------')

    audio_preprocessor.to(device)
    encoderdecoder.to(device)

    if args.amp:
        encoderdecoder = amp.initialize(models=encoderdecoder,
                                        opt_level='O' + str(optim_level))

    eval(data_layer=data_layer,
         audio_processor=audio_preprocessor,
         encoderdecoder=encoderdecoder,
         greedy_decoder=greedy_decoder,
         labels=ctc_vocab,
         device=device,
         args=args)