Пример #1
0
                        default='parametric',
                        choices=['euclidian', 'cosine', 'parametric'])
    parser.add_argument('--device', type=str, default='cuda')
    args = parser.parse_args()  ###############################

    args.name = f'DTN_hallu{args.hallu_m}_shot{args.shot}_trainway{args.train_way}'+\
                f'_validway{args.valid_way}_{args.distance}'
    wandb.init(config=args, project='dlcv_proto_net', name=args.name)

    # Image transform
    train_trans, valid_trans = get_transform()

    # Base Train data
    base_train_set = MiniImageNet_Dataset('../hw4_data/train/', train_trans)
    base_train_loader = DataLoader(base_train_set,
                                   batch_size=64,
                                   num_workers=6,
                                   shuffle=True)

    # Train data
    train_set = MiniImageNet_Dataset('../hw4_data/train/', train_trans)
    train_sampler = CategoriesSampler(train_set.label,
                                      n_batch=args.n_batch,
                                      n_ways=args.train_way,
                                      n_shot=args.shot + args.query)
    train_loader = DataLoader(train_set,
                              batch_sampler=train_sampler,
                              num_workers=6,
                              worker_init_fn=worker_init_fn)

    # Valid data
    valid_set = MiniImageNet_Dataset('../hw4_data/val/', valid_trans)
Пример #2
0
if __name__ == '__main__':
    args = parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu  #0:1080ti 1:1070
    warnings.filterwarnings("ignore")

    ## load dataset
    train_dataset = VCTK_Dataset('preprocess/vctk.h5',
                                 'preprocess/sample_segments/train_samples',
                                 seg_len=128,
                                 mode='train')
    valid_dataset = VCTK_Dataset('preprocess/vctk.h5',
                                 'preprocess/sample_segments/valid_samples',
                                 seg_len=128,
                                 mode='test')

    train_dataloader = DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        #num_workers = args.num_workers,
        shuffle=True)
    valid_dataloader = DataLoader(
        valid_dataset,
        batch_size=args.batch_size * 4,
    )
    #num_workers = args.num_workers)

    ## train
    train(args, train_dataloader, valid_dataloader)
Пример #3
0
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    root = '../hw3_data/digits/'
    # dataset
    source, target = args.source, args.target
    train_source_dataset = Digits_Dataset(root + f'{source}/train', source, t0)
    train_target_dataset = Digits_Dataset(root + f'{target}/train', target, t0)
    valid_source_dataset = Digits_Dataset(root + f'{source}/test', source, t1)
    valid_target_dataset = Digits_Dataset(root + f'{target}/test', target, t1)

    # dataloaders
    train_source_dataloader = DataLoader(
        train_source_dataset,
        batch_size=args.bsize,
        num_workers=args.num_workers,
        collate_fn=train_source_dataset.collate_fn,
        shuffle=True)
    train_target_dataloader = DataLoader(
        train_target_dataset,
        batch_size=args.bsize,
        num_workers=args.num_workers,
        collate_fn=train_target_dataset.collate_fn,
        shuffle=True)
    valid_source_dataloader = DataLoader(valid_source_dataset,
                                         batch_size=args.bsize * 4,
                                         num_workers=args.num_workers)
    valid_target_dataloader = DataLoader(valid_target_dataset,
                                         batch_size=args.bsize * 4,
                                         num_workers=args.num_workers)
Пример #4
0
    def build_model(self):
        """ DataLoader """
        train_transform = [
            transforms.RandomHorizontalFlip(),
            transforms.Resize((self.img_size + 30, self.img_size + 30)),
            transforms.RandomCrop(self.img_size),
            transforms.ToArray(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            transforms.ToTensor()
        ]

        test_transform = [
            transforms.Resize((self.img_size, self.img_size)),
            transforms.ToArray(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            transforms.ToTensor()
        ]

        self.trainA = os.path.join('dataset', self.dataset, 'trainA')
        self.trainB = os.path.join('dataset', self.dataset, 'trainB')
        self.testA = os.path.join('dataset', self.dataset, 'testA')
        self.testB = os.path.join('dataset', self.dataset, 'testB')
        self.trainA_loader = DataLoader(self.trainA,
                                        batch_size=self.batch_size,
                                        transforms=train_transform,
                                        shuffle=True)
        self.trainB_loader = DataLoader(self.trainB,
                                        batch_size=self.batch_size,
                                        transforms=train_transform,
                                        shuffle=True)
        self.testA_loader = DataLoader(self.testA,
                                       batch_size=1,
                                       transforms=test_transform,
                                       shuffle=False)
        self.testB_loader = DataLoader(self.testB,
                                       batch_size=1,
                                       transforms=test_transform,
                                       shuffle=False)
        """ Define Generator, Discriminator """
        self.genA2B = ResnetGenerator(input_nc=3,
                                      output_nc=3,
                                      ngf=self.ch,
                                      n_blocks=self.n_res,
                                      img_size=self.img_size,
                                      light=self.light)
        self.genB2A = ResnetGenerator(input_nc=3,
                                      output_nc=3,
                                      ngf=self.ch,
                                      n_blocks=self.n_res,
                                      img_size=self.img_size,
                                      light=self.light)
        self.disGA = Discriminator(input_nc=3, ndf=self.ch, n_layers=7)
        self.disGB = Discriminator(input_nc=3, ndf=self.ch, n_layers=7)
        self.disLA = Discriminator(input_nc=3, ndf=self.ch, n_layers=5)
        self.disLB = Discriminator(input_nc=3, ndf=self.ch, n_layers=5)
        """ Define Loss """
        self.L1_loss = dygraph.L1Loss()
        self.MSE_loss = layers.mse_loss
        self.BCELoss = bce_loss
        # BCELoss should be called with Normalize=True, use seperately
        """ Trainer """
        self.G_optim = optimizer.Adam(learning_rate=self.lr,
                                      beta1=0.5,
                                      beta2=0.999,
                                      parameter_list=self.genA2B.parameters() +
                                      self.genB2A.parameters())
        self.D_optim = optimizer.Adam(learning_rate=self.lr,
                                      beta1=0.5,
                                      beta2=0.999,
                                      parameter_list=self.disGA.parameters() +
                                      self.disLB.parameters())
Пример #5
0
                        default='cuda:0',
                        help='cpu or cuda:0 or cuda:1')

    args = parser.parse_args() if string is None else parser.parse_args(string)
    return args


if __name__ == '__main__':

    args = parse_args()

    wandb.init(config=args, project='dlcv_gan_face')

    transform = transforms.Compose([
        transforms.Resize(args.img_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.5] * 3, [0.5] * 3)
    ])
    train_dataset = Face_Dataset('../hw3_data/face/train', transform)
    valid_dataset = Face_Dataset('../hw3_data/face/test', transform)
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=args.batch,
                                  shuffle=True,
                                  num_workers=args.num_workers)
    valid_dataloader = DataLoader(valid_dataset,
                                  batch_size=args.batch,
                                  num_workers=args.num_workers)

    train(args, train_dataloader, valid_dataloader)
Пример #6
0
import copy
# from depth_CPM import CPM3D
from model import FSRCNN
import torch.utils.data as data
from torch import nn
from train import train_model
from tensorboardX import SummaryWriter
from dataset import DataLoader
from torch.optim.lr_scheduler import ExponentialLR

import torch
import torch.backends.cudnn as cudnn

#training code
if args.phase == 'train':
    dataloaders = data.DataLoader(DataLoader(args),
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=args.workers,
                                  pin_memory=True)

    device = torch.device("cuda:0" if (
        torch.cuda.is_available() and args.ngpu > 0) else "cpu")

    print("constructing model ....")
    model = FSRCNN()

    model = nn.DataParallel(model.to(device), gpuids)

    if args.resume:
        model.load_state_dict(torch.load(args.model_path))
Пример #7
0
def run_experiment(args):
    train_distortion, val_distortion = None, None
    if args.distortion:
        train_distortion = Distorter(loc=0,
                                     sd=args.distortion_sd,
                                     seed=args.seed)
        val_distortion = Distorter(loc=0,
                                   sd=args.distortion_sd,
                                   seed=args.seed + 1)

    train_params = dict(
        distortion=train_distortion,
        variable_binning=args.variable_binning,
        start=args.start,
        varying_start_value=args.varying_start_value,
        n_agents=args.n_agents,
        timesteps=args.timesteps,
        compute_fiv=args.compute_frequency_increment_values,
    )

    train_loader = DataLoader(
        train_params,
        batch_size=args.batch_size,
        seed=args.seed,
        distortion=args.distortion,
        n_sims=args.n_sims,
        train=True,
        n_workers=args.n_workers,
        normalize_samples=args.normalize_samples,
    )

    val_params = dict(
        distortion=val_distortion,
        variable_binning=args.variable_binning,
        start=args.start,
        varying_start_value=args.varying_start_value,
        n_agents=args.n_agents,
        timesteps=args.timesteps,
        compute_fiv=args.compute_frequency_increment_values,
    )

    val_loader = DataLoader(
        val_params,
        batch_size=args.batch_size,
        seed=args.seed + 1,
        distortion=args.distortion,
        n_sims=int(args.val_size * args.n_sims),
        train=False,
        n_workers=args.n_workers,
        normalize_samples=args.normalize_samples,
    )

    if args.cuda and torch.cuda.is_available():
        device = torch.device("cuda")
        print("Using GPU")
    else:
        device = torch.device("cpu")

    if args.model == "FCN":
        model = FCN(1, 1)
    elif args.model == "LSTMFCN":
        model = LSTMFCN(args.hidden_size, 1, args.num_layers, 1, args.dropout,
                        args.rnn_dropout, args.bidirectional)
    elif args.model == "INCEPTION":
        model = InceptionTime(1, 1)
    else:
        model = ResNet(1)

    model = model.to(device)
    trainer = Trainer(model, train_loader, val_loader, device=device)
    trainer.fit(args.n_epochs,
                learning_rate=args.learning_rate,
                lr_patience=args.learning_rate_patience,
                early_stop_patience=args.early_stop_patience,
                evaluation_maximum=args.evaluation_maximum)

    run_id = str(uuid.uuid1())[:8] if args.outfile is None else args.outfile

    trainer.model.eval()
    trainer.save_model(run_id)

    if args.test:
        print("Evaluating the model...")
        if args.test_samples is not None:
            print("Using precomputed test-samples...")
        else:
            print("Generating test samples...")
        test_samples = args.test_samples if args.test_samples is not None else generate_test_samples(
            args.timesteps, args.n_agents, args.n_workers)

        nn_results = test_model(model,
                                test_samples,
                                args.timesteps,
                                args.n_agents,
                                device=device,
                                normalize_samples=args.normalize_samples)
        nn_scores = evaluate_results(nn_results, prefix="NN_")

        return run_id, nn_results, nn_scores
Пример #8
0
def language_smoothing_experiment():
    import pandas as pd

    # create boost_results pandas dataframe with colums: boost_percent, cross_entropy, dataset_name
    boost_results_df = pd.DataFrame(
        columns=["boost_percents", "cross_entropies", "dataset_name"])

    # create boost_results pandas dataframe with colums: discount_percent, cross_entropy, dataset_name
    discount_results_df = pd.DataFrame(
        columns=["discount_percents", "cross_entropies", "dataset_name"])

    for dataset_name in ["TEXTCZ1", "TEXTEN1"]:
        print(f"---Language smoothing experiment on {dataset_name} dataset---")

        train_data = DataLoader(f"datasets/{dataset_name}_train.txt")
        heldout_data = DataLoader(f"datasets/{dataset_name}_heldout.txt")
        test_data = DataLoader(f"datasets/{dataset_name}_test.txt")

        print("Fitting the training data...")
        model = LinearInterpolationModel(train_data.get_clean_data(), 3)

        print("Fitting the lambdas on the TRAINING data...")
        # model.fit_lambdas(train_data.get_clean_data())

        print(
            f"Test cross-entropy: {model.cross_entropy(test_data.get_clean_data())}\n\n"
        )

        print("Now fitting the lambdas (correctly) on the HELDOUT data...")
        model.fit_lambdas(heldout_data.get_clean_data())

        print(
            f"Test cross-entropy: {model.cross_entropy(test_data.get_clean_data())}\n\n"
        )

        boost_results = boost_lambdas_experiment(model, test_data,
                                                 dataset_name)
        boost_results[
            "dataset_name"] = "Czech" if dataset_name == "TEXTCZ1" else "English"
        boost_results_df = boost_results_df.append(pd.DataFrame(boost_results),
                                                   ignore_index=True)

        discount_results = decrease_lambdas_experiment(model, test_data,
                                                       dataset_name)
        discount_results[
            "dataset_name"] = "Czech" if dataset_name == "TEXTCZ1" else "English"
        discount_results_df = discount_results_df.append(
            pd.DataFrame(discount_results), ignore_index=True)

    # plot with seaborn
    import seaborn as sns

    sns.set(style="darkgrid")

    # plot boost_results
    plt.figure(figsize=(9, 6))
    sns.lineplot(x="boost_percents",
                 y="cross_entropies",
                 data=boost_results_df,
                 hue="dataset_name",
                 marker="o",
                 legend="brief")
    plt.title("Boosting trigram-lambda experiment")
    plt.xlabel("Boost percentage")
    plt.ylabel("Cross-entropy")
    plt.savefig("results/boost_experiment.png")

    # plot discount_results
    plt.figure(figsize=(9, 6))
    sns.lineplot(x="discount_percents",
                 y="cross_entropies",
                 data=discount_results_df,
                 hue="dataset_name",
                 marker="o",
                 legend="brief")
    plt.title("Discounting trigram-lambda experiment")
    plt.xlabel("Discount percentage")
    plt.ylabel("Cross-entropy")
    plt.savefig("results/discount_experiment.png")
Пример #9
0
def train_style(model_prefix, alpha=0.5, size=256, batch_size=4, tv_weight=1e-4, max_epoch=1000, lr=1e-4,
                style_layer = ['relu1_1', 'relu2_1', 'relu3_1', 'relu4_1'], content_layer = 'relu4_1'):
    desc_executor, gene_executor, gram_executors = init_executor(batch_size, style_layer, content_layer)
    tv_grad_executor = get_tv_grad_executor(desc_executor.arg_dict['data'], mx.gpu(), tv_weight) 
    optimizer = mx.optimizer.Adam(learning_rate=lr, wd=5e-5)
    optim_states = []
    for i, var in enumerate(gene_executor.grad_dict):
        if var != 'data':
            optim_states.append(optimizer.create_state(i, gene_executor.arg_dict[var])) # allocate memory
        else:
            optim_states.append([])
    target_grams = [mx.nd.zeros(x.outputs[0].shape, mx.gpu()) for x in gram_executors] #[64*64, 128*128, 256*256, 512*512]
    gram_diff = [mx.nd.empty(x.outputs[0].shape, mx.gpu()) for x in gram_executors]
    gram_grad = [mx.nd.empty(x.shape, mx.gpu()) for x in desc_executor.outputs[:len(style_layer)]]
    
    content_content = mx.nd.empty(desc_executor.outputs[-1].shape, mx.gpu())
    style_content = mx.nd.empty(content_content.shape, mx.gpu())
    content_grad = mx.nd.empty(content_content.shape, mx.gpu())
    
#    target_style = [mx.nd.empty(desc_executor.outputs[i].shape, mx.gpu()) for i in range(len(style_layer))]
    style_grad = [mx.nd.empty(x.shape, mx.gpu()) for x in desc_executor.outputs[:len(style_layer)]]
    
    content_loader = DataLoader(CONTENTPATH, batch_size=batch_size)
    style_loader = DataLoader(STYLEPATH, batch_size=batch_size)

    for epoch in range(max_epoch):
        content_loader.next().copyto(desc_executor.arg_dict['data'])
        desc_executor.forward()
        content_content[:] = desc_executor.outputs[-1]
        
        style_loader.next().copyto(desc_executor.arg_dict['data'])
        desc_executor.forward()
        style_content[:] = desc_executor.outputs[-1]
        
        target_content = adaInstanceNorm(content_content, style_content)
        for j in range(len(style_layer)):
            desc_executor.outputs[j].copyto(gram_executors[j].arg_dict['gram_data'])
            gram_executors[j].forward()
            target_grams[j][:] = gram_executors[j].outputs[0]
            target_grams[j][:] /= 1
        
        target_content.copyto(gene_executor.arg_dict['data'])
        gene_executor.forward(is_train=True)
        generate_imgs = [postprocess_img(img.asnumpy()) for img in gene_executor.outputs[0]]
        generate_imgs = [preprocess_img(img) for img in generate_imgs]
        for i in range(batch_size):
            desc_executor.arg_dict['data'][i:i+1] = generate_imgs[i]  #copy numpy to mxnet.ndarray
        tv_grad_executor.forward()
        desc_executor.forward(is_train=True)
        
        loss = [0] * len(desc_executor.outputs)
        for j in range(len(style_layer)):
            desc_executor.outputs[j].copyto(gram_executors[j].arg_dict['gram_data'])
            gram_executors[j].forward(is_train=True)
            gram_diff[j] = gram_executors[j].outputs[0] - target_grams[j]
            gram_executors[j].backward(gram_diff[j])
            gram_grad[j][:] = gram_executors[j].grad_dict['gram_data'] / batch_size
            loss[j] += np.sum(np.square(gram_diff[j].asnumpy())) / batch_size
        
        dec_gen_feat = desc_executor.outputs[-1]
        layer_size = np.prod(dec_gen_feat.shape)
        content_diff = dec_gen_feat - target_content
#        loss[-1] += alpha * np.sum(np.mean(np.square(content_diff.asnumpy()), axis=(2,3))) / batch_size
        loss[-1] += alpha * np.sum(np.square(content_diff.asnumpy()/np.sqrt(layer_size))) / batch_size
        content_grad = alpha * content_diff / batch_size / layer_size
        if epoch % 20 == 0:
            print epoch, 'loss', sum(loss), np.array(loss)
        desc_executor.backward(style_grad+[content_grad])
        gene_executor.backward(desc_executor.grad_dict['data']+tv_grad_executor.outputs[0])
        for i, var in enumerate(gene_executor.grad_dict):
            if var != 'data':
                optimizer.update(i, gene_executor.arg_dict[var], gene_executor.grad_dict[var], optim_states[i]) #update parameter
        if epoch % 500 == 499:
            mx.nd.save('%s_args.nd'%model_prefix, gene_executor.arg_dict)
            mx.nd.save('%s_auxs.nd'%model_prefix, gene_executor.aux_dict)
    mx.nd.save('%s_args.nd'%model_prefix, gene_executor.arg_dict)
    mx.nd.save('%s_auxs.nd'%model_prefix, gene_executor.aux_dict)
Пример #10
0
def main(args):
    # Get device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # Define model
    model = nn.DataParallel(LightSpeech()).to(device)
    print("Model Has Been Defined")
    num_param = utils.get_param_num(model)
    print('Number of LightSpeech Parameters:', num_param)

    # Get dataset
    dataset = LightSpeechDataset()

    # Optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=hp.learning_rate,
                                 weight_decay=hp.weight_decay)

    # Criterion
    criterion = LigthSpeechLoss()

    # Load checkpoint if exists
    try:
        checkpoint = torch.load(
            os.path.join(hp.checkpoint_path,
                         'checkpoint_%d.pth.tar' % args.restore_step))
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        print("\n---Model Restored at Step %d---\n" % args.restore_step)

    except:
        print("\n---Start New Training---\n")
        if not os.path.exists(hp.checkpoint_path):
            os.mkdir(hp.checkpoint_path)

    # Init logger
    if not os.path.exists(hp.logger_path):
        os.mkdir(hp.logger_path)

    # Define Some Information
    Time = np.array([])
    Start = time.clock()

    # Training
    model = model.train()

    for epoch in range(hp.epochs):
        # Get Training Loader
        training_loader = DataLoader(dataset,
                                     batch_size=hp.batch_size**2,
                                     shuffle=True,
                                     collate_fn=collate_fn,
                                     drop_last=True,
                                     num_workers=0)
        total_step = hp.epochs * len(training_loader) * hp.batch_size

        for i, batchs in enumerate(training_loader):
            for j, data_of_batch in enumerate(batchs):
                start_time = time.clock()

                current_step = i * hp.batch_size + j + args.restore_step + \
                    epoch * len(training_loader)*hp.batch_size + 1

                # Init
                optimizer.zero_grad()

                # Get Data
                character = torch.from_numpy(
                    data_of_batch["text"]).long().to(device)
                # mel_gt_target = torch.from_numpy(
                #     data_of_batch["mel_gt_target"]).float().to(device)
                mel_tac2_target = torch.from_numpy(
                    data_of_batch["mel_tac2_target"]).float().to(device)

                D = torch.from_numpy(data_of_batch["D"]).int().to(device)
                cemb = torch.from_numpy(
                    data_of_batch["cemb"]).float().to(device)

                input_lengths = torch.from_numpy(
                    data_of_batch["length_text"]).long().to(device)
                output_lengths = torch.from_numpy(
                    data_of_batch["length_mel"]).long().to(device)

                max_c_len = max(input_lengths).item()
                max_mel_len = max(output_lengths).item()

                # Forward
                mel, padd_predicted, cemb_out = model(character, input_lengths,
                                                      output_lengths,
                                                      max_c_len, max_mel_len,
                                                      D)

                # Cal Loss
                mel_loss, similarity_loss, duration_loss = criterion(
                    mel, padd_predicted, cemb_out, mel_tac2_target, D, cemb)
                total_loss = mel_loss + similarity_loss + duration_loss

                # Logger
                t_l = total_loss.item()
                m_l = mel_loss.item()
                s_l = similarity_loss.item()
                d_l = duration_loss.item()

                with open(os.path.join("logger", "total_loss.txt"),
                          "a") as f_total_loss:
                    f_total_loss.write(str(t_l) + "\n")

                with open(os.path.join("logger", "mel_loss.txt"),
                          "a") as f_mel_loss:
                    f_mel_loss.write(str(m_l) + "\n")

                with open(os.path.join("logger", "similarity_loss.txt"),
                          "a") as f_s_loss:
                    f_s_loss.write(str(s_l) + "\n")

                with open(os.path.join("logger", "duration_loss.txt"),
                          "a") as f_d_loss:
                    f_d_loss.write(str(d_l) + "\n")

                # Backward
                total_loss.backward()

                # Clipping gradients to avoid gradient explosion
                nn.utils.clip_grad_norm_(model.parameters(), 1.)

                # Update weights
                optimizer.step()

                # Print
                if current_step % hp.log_step == 0:
                    Now = time.clock()

                    str1 = "Epoch [{}/{}], Step [{}/{}]:".format(
                        epoch + 1, hp.epochs, current_step, total_step)
                    str2 = "Mel Loss: {:.4f}, Duration Loss: {:.4f}, Similarity Loss: {:.4f};".format(
                        m_l, d_l, s_l)
                    str3 = "Time Used: {:.3f}s, Estimated Time Remaining: {:.3f}s.".format(
                        (Now - Start),
                        (total_step - current_step) * np.mean(Time))

                    print("\n" + str1)
                    print(str2)
                    print(str3)

                    with open(os.path.join("logger", "logger.txt"),
                              "a") as f_logger:
                        f_logger.write(str1 + "\n")
                        f_logger.write(str2 + "\n")
                        f_logger.write(str3 + "\n")
                        f_logger.write("\n")

                if current_step % hp.save_step == 0:
                    torch.save(
                        {
                            'model': model.state_dict(),
                            'optimizer': optimizer.state_dict()
                        },
                        os.path.join(hp.checkpoint_path,
                                     'checkpoint_%d.pth.tar' % current_step))
                    print("save model at step %d ..." % current_step)

                end_time = time.clock()
                Time = np.append(Time, end_time - start_time)
                if len(Time) == hp.clear_Time:
                    temp_value = np.mean(Time)
                    Time = np.delete(Time, [i for i in range(len(Time))],
                                     axis=None)
                    Time = np.append(Time, temp_value)
Пример #11
0
 ITORS = 100
 # 加载字典
 vocab = Vocab(vocab_path)
 char_vocab = CharVocab(char_vocab_path)
 entity_vocab = EntityVocab(entity_vocab_path)
 # 创建数据集
 train_data_set = DataSet(path=train_data_path,
                     vocab=vocab,
                     entity_vocab=entity_vocab,
                     entity_padding_len=max_sent_length)
 test_data_set = DataSet(path=test_data_path,
                     vocab=vocab,
                     entity_vocab=entity_vocab,
                     entity_padding_len=max_sent_length)
 # 创建加载器
 train_data_loader = DataLoader(train_data_set, shuffle=True, batch_size=BATCH_SIZE)
 test_data_loader = DataLoader(test_data_set, shuffle=True, batch_size=BATCH_SIZE)
 # 是否用GPU
 if torch.cuda.is_available():
     device = torch.device('cuda:0')
 else:
     device = torch.device('cpu')
 # 模型初始化
 model = Model(vocab=vocab,
               char_vocab=char_vocab,
               entity_vocab=entity_vocab,
               char_embedding_dim=char_embedding_dim,
               word_embedding_dim=word_embedding_dim,
               hidden_size=hidden_size,
               device=device,
               kernel_n=kernel_n, # 卷积核长度
Пример #12
0
def sentence_weight_examine(sentence_idx):
    dataset = SimpleDataset(validation_percentage=validation_percentage,
                            dataset_name=dataset_name)
    loader = DataLoader(data='valid',
                        simple_dataset=dataset,
                        dataset_name='sem-2016',
                        padding=False)
    # for idx, sentence in enumerate(dataset.valid_original_sentence):
    #     print(idx)
    #     print(sentence)
    #     print(dataset.valid_data[idx][0])
    #     print(loader[idx][1])
    # f, ax = plt.subplots(figsize=(9, 6))
    # flights = flights_long.pivot("month", "year", "passengers")
    # print(type(flights))
    # exit()
    item = loader[sentence_idx][0]
    preprocessed_sentence = dataset.valid_data[sentence_idx][0]
    orig_sentence = dataset.valid_original_sentence[sentence_idx]
    translator = str.maketrans(string.punctuation,
                               ' ' * len(string.punctuation))
    orig_sentence = orig_sentence.translate(translator)
    orig_sentence = orig_sentence.split()
    weights, existence = get_sentence_weights('./topic-attention', item)

    topics = []
    for i in range(11):
        topics.append(str(i + 1))
    stopwords_english = set(stopwords.words('english'))
    attention_weights = []
    words = []
    for idx, weight in enumerate(weights):
        weight = list(weight.squeeze(0).squeeze(-1).detach().numpy())
        temp = []
        for word in orig_sentence:
            words.append(word)
            if word.lower() in stopwords_english:
                temp.append(float(0.0))
            else:
                temp.append(
                    float(weight[preprocessed_sentence.index(word.lower())]))
        attention_weights.append(np.array(temp))
    attention_weights = np.array(attention_weights)
    attention_weights = attention_weights.transpose()

    fig, ax = plt.subplots(figsize=(10, 10))
    sns.heatmap(attention_weights,
                annot=True,
                fmt=".2f",
                ax=ax,
                xticklabels=topics,
                yticklabels=orig_sentence,
                cmap="YlGnBu",
                cbar_kws={'label': 'Attention Weights'})
    plt.xlabel('Topics')
    plt.ylabel('Sentence')
    plt.savefig('./attention_heatmap/valid_sentence_#' + str(sentence_idx) +
                '_attention_weights')

    topic_probs = []
    for idx in range(len(existence)):
        prob = float(existence[idx])
        topic_probs.append(prob)
    topic_probs = [np.array(topic_probs)]
    topic_probs = np.array(topic_probs).transpose()
    fig, ax = plt.subplots(figsize=(10, 10))
    sns.heatmap(topic_probs,
                annot=True,
                fmt=".2f",
                ax=ax,
                xticklabels=['Topic Probabilities'],
                yticklabels=topics,
                cmap="YlGnBu")
    plt.savefig('./attention_heatmap/valid_sentence_#' + str(sentence_idx) +
                '_topic_probs')
Пример #13
0
import tensorflow.keras as keras
import tensorflow as tf
from method import generator, discriminator, CallBackFun
import os
from tools import copy_code

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
tf.enable_eager_execution(config)

os.environ["CUDA_VISIBLE_DEVICES"] = "3"
experiment_path = '/export/project/SAVE_PATH/'
train_folder = 'apr28-photo2ce-128-par1'
copy_code(src='/export/project/CODE_PATH/', dst=experiment_path + train_folder + '/')

train_data = DataLoader(path_x='../cezanne2photo/trainB/', path_y='../cezanne2photo/trainA/', is_pair=False)
test_data = DataLoader(path_x='../cezanne2photo/testB/', path_y='../cezanne2photo/testA/', is_pair=False)

# Different lr for generative network and discriminate network
optimizer_dis = tf.train.AdamOptimizer(1e-6)
optimizer_gen = tf.train.AdamOptimizer(1e-4)

loss_fn_mse = keras.losses.MeanSquaredError()
loss_fn_mae = keras.losses.MeanAbsoluteError()

gen_xy = generator(input_shape=[128, 128, 3])
gen_yx = generator(input_shape=[128, 128, 3])

dis = discriminator(input_shape=[128, 128, 3])

# Print Network Information
Пример #14
0
    m = GBDTMulti(LIB, out_dim=meta['out'], params=p)
    x_train, y_train, x_test, y_test = data
    m.set_data((x_train, y_train), (x_test, y_test))
    t = time.time()
    m.train(ROUND)
    t = time.time() - t
    if args.time == 1:
        print("Average time: {:.3f}".format(t / ROUND))
    else:
        print("Total time: {:.3f}".format(t))
    del m


if __name__ == '__main__':
    m = DataLoader()
    if args.data == 'mnist_reg':
        data, meta = m.get('mnist_reg', True, 10000)
        for k in [4, 8, 16]:
            regression(data, meta, 7, 0.1, k, True)
            regression(data, meta, 7, 0.1, k, False)
    elif args.data == 'nus-wide':
        data, meta = m.get('nus-wide', True, 10000)
        for k in [8, 16, 32, 64]:
            regression(data, meta, 8, 0.1, k, True)
            regression(data, meta, 8, 0.1, k, False)
    elif args.data == 'Caltech101':
        data, meta = m.get('Caltech101', False, 10000)
        for k in [8, 16, 32, 64]:
            classification(data, meta, 8, 0.1, k, True)
            classification(data, meta, 8, 0.1, k, False)
Пример #15
0
        test_acc_stdev = np.std(test_acc_list)

        if print_result:
            print("K-fold: {}, Kernel: {}".format(self.loader.get_n_splits(), self.gpc_dict[0].kernel))
            print("Train Acc: {} (+/- {})".format(train_acc_avg, train_acc_stdev))
            print("Test Acc: {} (+/- {})".format(test_acc_avg, test_acc_stdev))
            print("=" * 10)

        return train_acc_list, test_acc_list


if __name__ == '__main__':

    now_fold = 0

    data_loader = DataLoader('{}.tsv'.format(FILE_NAME))
    data_loader.transform_x(decomposition.PCA, n_components=80)

    kernel_list = [
        Matern(0.5) + Matern(1.5) + Matern(nu=2.5),
        random() * Matern(0.5) + random() * Matern(1.5) + random() * Matern(nu=2.5),
        random() * Matern(0.5) + random() * Matern(1.5) + random() * Matern(nu=2.5),
        random() * Matern(0.5) + random() * Matern(1.5) + random() * Matern(nu=2.5),
    ]

    results = []
    for now_kernel in kernel_list:
        try:
            gp_classifier = GPC(
                kernel=now_kernel,
                loader=data_loader,
Пример #16
0
def validate(test_img_files_path, test_target_files_path, category_list,
             split_size, batch_size, load_size, model, cell_dim, num_boxes,
             num_classes, device, iou_threshold_nms, iou_threshold_map,
             threshold, use_nms):
    """
    Uses the test dataset to validate the performance of the model. Calculates 
    the mean Average Precision (mAP) for object detection.
    
    Parameters:
        test_img_files_path (str): System path to the image directory containing 
        the test dataset images.
        test_target_files_path (str): System path to the json file containing the 
        ground-truth labels for the test dataset.
        category_list (list): A list containing all classes which should be detected.
        split_size (int): Size of the grid which is applied to the image.
        batch_size (int): Batch size.
        load_size (int): Amount of batches which are loaded in one function call.
        model (): The YOLOv1-model.
        cell_dim (int): The dimension of a single cell.
        num_boxes (int): Amount of bounding boxes which are being predicted by 
        the model.
        num_classes (int): Amount of classes which are being predicted.
        device (): Device which is used for training and testing the model.
        iou_threshold_nms (float): Threshold for the IoU between the predicted boxes 
        and the ground-truth boxes for non maximum suppression.
        iou_threshold_map (float): Threshold for the IoU between the predicted boxes 
        and the ground-truth boxes for mean average precision.
        threshold (float): Threshold for the confidence score of predicted 
        bounding boxes.
        use_nms (bool): Specifies if non max suppression should be applied to the
        bounding box predictions.
    """

    model.eval()

    print("DATA IS BEING LOADED FOR VALIDATION")
    print("")
    # Initialize the DataLoader for the test dataset
    data = DataLoader(test_img_files_path, test_target_files_path,
                      category_list, split_size, batch_size, load_size)
    data.LoadFiles()

    # Here will all predicted and ground-truth bounding boxes for the whole test
    # dataset be stored. These two lists will be finally used for evaluation.
    # Every element of the list will have the following form:
    # [image index, class prediction, confidence score, x1, y1, x2, y2]
    # Every element of the list represents a single bounding box.
    all_pred_boxes = []
    all_target_boxes = []

    train_idx = 0  # Tracks the sample index for each image in the test dataset

    # This while loop is used to fill the two lists all_pred_boxes and all_target_boxes.
    while len(data.img_files) > 0:
        print("LOADING NEW VALIDATION BATCHES")
        print("Remaining validation files:" + str(len(data.img_files)))
        print("")
        data.LoadData()

        for batch_idx, (img_data, target_data) in enumerate(data.data):
            img_data = img_data.to(device)
            target_data = target_data.to(device)

            with torch.no_grad():
                predictions = model(img_data)

            print('Extracting bounding boxes')
            print('Batch: {}/{} ({:.0f}%)'.format(batch_idx + 1, len(
                data.data), (batch_idx + 1) / len(data.data) * 100.))
            print('')
            pred_boxes = extract_boxes(predictions, num_classes, num_boxes,
                                       cell_dim, threshold)
            target_boxes = extract_boxes(target_data, num_classes, 1, cell_dim,
                                         threshold)

            for sample_idx in range(len(pred_boxes)):
                if use_nms:
                    # Applies non max suppression to the bounding box predictions
                    nms_boxes = non_max_suppression(pred_boxes[sample_idx],
                                                    iou_threshold_nms)
                else:
                    # Use the same list without changing anything
                    nms_boxes = pred_boxes[sample_idx]

                for nms_box in nms_boxes:
                    all_pred_boxes.append([train_idx] + nms_box)

                for box in target_boxes[sample_idx]:
                    all_target_boxes.append([train_idx] + box)

                train_idx += 1

    pred = {
        0: 0,
        1: 0,
        2: 0,
        3: 0,
        4: 0,
        5: 0,
        6: 0,
        7: 0,
        8: 0,
        9: 0,
        10: 0,
        11: 0,
        12: 0,
        13: 0
    }
    for prediction in all_pred_boxes:
        cls_idx = prediction[1]
        pred[cls_idx] += 1
    print(pred)
    pred = {
        0: 0,
        1: 0,
        2: 0,
        3: 0,
        4: 0,
        5: 0,
        6: 0,
        7: 0,
        8: 0,
        9: 0,
        10: 0,
        11: 0,
        12: 0,
        13: 0
    }
    for prediction in all_target_boxes:
        cls_idx = prediction[1]
        pred[cls_idx] += 1
    print(pred)
    """
Пример #17
0
from config import *
import copy
from  model import G
import torch.utils.data as data
from torch import nn
from train import train_model
from tensorboardX import SummaryWriter
from dataset import DataLoader
from torch.optim.lr_scheduler import ExponentialLR

import torch
import torch.backends.cudnn as cudnn

#training code
if args.phase=='train':
    dataloaders = data.DataLoader(DataLoader(args), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
    
    device = torch.device("cuda:0")
    
    print("constructing model ....")
    model = G(args.nframes)
        
    model = nn.DataParallel(model.to(device), gpuids)
    
    if args.resume:
        ckpt = torch.load(args.model_path)
        new_ckpt  = {}
        for key in ckpt:
            if not key.startswith('module'):
                new_key  = 'module.' + key
            else:
Пример #18
0
    model.restore(str(hp.load_weight_file))
    optimizer = optim.Adam(model.parameters())

    current_step = model.get_step()

    stft = MelSTFT(filter_length=hp.n_fft,
                   hop_length=hp.hop_length,
                   win_length=hp.win_length,
                   n_mel_channels=hp.n_mels,
                   sampling_rate=hp.sampling_rate,
                   mel_fmin=hp.min_f,
                   mel_fmax=hp.max_f).to(device=hp.device)

    train_set = DataLoader(q_size=hp.q_size,
                           n_loading_threads=hp.n_loading_threads,
                           stft=stft,
                           redundancy=hp.redundancy,
                           device=hp.device)

    # Iterate on training session number:
    for session in hp.schedule:
        r, max_step, batch_size = session
        if current_step < max_step:
            model.set_r(r)
            train_set.set_state(batch_size, r)
            training_steps = max_step - current_step
            simple_table([(f'Steps with r={r}',
                           str(training_steps // 1000) + 'k Steps'),
                          ('Batch Size', batch_size),
                          ('Outputs/Step (r)', model.get_r())])
Пример #19
0
         'early_stop': 25, 'one_side': True, 'verbose': False, 'hist_cache': 48,
         'min_samples': 8}

     x_train, y_train, x_test, y_test = data
    m = GBDTSingle(LIB, out_dim=1, params=p)
    preds = np.zeros_like(y_test)
    m.set_data((x_train, None), (x_test, None))
    
    for i in range(meta['out']):
        yy_train = np.ascontiguousarray(y_train[:, i])
        yy_test = np.ascontiguousarray(y_test[:, i])
        m._set_label(yy_train, True)
        m._set_label(yy_test, False)
        m.train(ROUND)
        _ = m.predict(x_test)
        preds[:, i] = _
        m.reset()
    np.save("result/gbdt", preds)


if __name__ == '__main__':
    m = DataLoader()
    data, meta = m.get(args.data, False, args.N)

    if args.mode == 'gbdtmo':
        train_gbdt_multi(data, meta)
    elif args.mode == 'gbdtso':
        train_gbdt_single(data, meta)
    elif args.mode == 'lightgbm':
        train_lightgbm(data, meta)
import argparse

import numpy as np

import torch
import torch.nn as nn
import torch.optim as optim

from dataset import Dataset
from dataset import DataLoader

train_dataset = Dataset('data')

loader = DataLoader(train_dataset)

for batch_inputs, batch_outputs, masks, lengths in loader:
    loader.print_batch(batch_inputs)
    print(lengths)
    print(masks)
    
Пример #21
0
    args.name = f'shot{args.shot}_trainway{args.train_way}_validway{args.valid_way}'+\
                 f'_{args.distance}_epochs{args.epochs}'
    wandb.init(config=args, project='dlcv_proto_net', name=args.name)

    # Image transform
    train_trans, valid_trans = get_transform()

    # Train data
    train_set = MiniImageNet_Dataset('../hw4_data/train/', train_trans)
    train_sampler = CategoriesSampler(train_set.label,
                                      n_batch=args.n_batch,
                                      n_ways=args.train_way,
                                      n_shot=args.shot + args.query)
    train_loader = DataLoader(train_set,
                              batch_sampler=train_sampler,
                              num_workers=6,
                              worker_init_fn=worker_init_fn)

    # Valid data
    valid_set = MiniImageNet_Dataset('../hw4_data/val/', valid_trans)
    valid_sampler = CategoriesSampler(valid_set.label,
                                      n_batch=args.n_batch,
                                      n_ways=args.valid_way,
                                      n_shot=args.shot + args.query)
    valid_loader = DataLoader(valid_set,
                              batch_sampler=valid_sampler,
                              num_workers=6,
                              worker_init_fn=worker_init_fn)

    # model
    model = Conv4().to(args.device)
Пример #22
0
    file_handler = logging.FileHandler('%s/record.txt' % (log_dir))
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)
    log_string('PARAMETER ...')
    log_string(opt)

    # Data Loading ###################################################################################################################
    log_string('Load dataset {} ...'.format(opt.dataset))
    Data_path = {
        "ModelNet": '/eva_data/psa/datasets/PointNet/ModelNet40_pcd/',
        "ShapeNet": '/eva_data/psa/datasets/MSN_PointNet/ShapeNetCore.v1'
    }
    TRAIN_DATASET = DataLoader(root=Data_path[opt.dataset],
                               dataset=opt.dataset,
                               sparsify_mode=opt.sparsify_mode,
                               npoint=opt.num_point,
                               split='train')
    TEST_DATASET = DataLoader(root=Data_path[opt.dataset],
                              dataset=opt.dataset,
                              sparsify_mode=opt.sparsify_mode,
                              npoint=opt.num_point,
                              split='test')
    trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET,
                                                  batch_size=opt.batch_size,
                                                  shuffle=True,
                                                  num_workers=4,
                                                  drop_last=True)
    testDataLoader = torch.utils.data.DataLoader(TEST_DATASET,
                                                 batch_size=opt.batch_size,
                                                 shuffle=False,
Пример #23
0
if __name__ == '__main__':
    args = parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    os.environ['CUDA_LAUNCH_BLOCKING'] = "1"

    ## load tokenizer
    #tokenizer = BertTokenizer.from_pretrained(pretrained_weights)#, do_lower_case=True)
    tokenizer = BertJapaneseTokenizer.from_pretrained(
        pretrained_weights)  #, do_lower_case=True)

    ## load dataset
    train_dataset = Cinnamon_Dataset(f'{args.cinnamon_data_path}/train/',
                                     tokenizer, args.delta)
    valid_dataset = Cinnamon_Dataset(f'{args.cinnamon_data_path}/dev/',
                                     tokenizer, args.delta)

    train_dataloader = DataLoader(train_dataset,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers,
                                  collate_fn=train_dataset.collate_fn,
                                  shuffle=True)
    valid_dataloader = DataLoader(valid_dataset,
                                  batch_size=args.batch_size * 4,
                                  num_workers=args.num_workers,
                                  collate_fn=valid_dataset.collate_fn)

    ## train
    train(args, train_dataloader, valid_dataloader)
Пример #24
0
def main(args):
    # Get device
    #     device = torch.device('cuda'if torch.cuda.is_available()else 'cpu')
    device = 'cuda'
    # Define model
    model = FastSpeech().to(device)
    print("Model Has Been Defined")
    num_param = utils.get_param_num(model)
    print('Number of FastSpeech Parameters:', num_param)

    current_time = time.strftime("%Y-%m-%dT%H:%M", time.localtime())
    writer = SummaryWriter(log_dir='log/' + current_time)

    optimizer = torch.optim.Adam(model.parameters(),
                                 betas=(0.9, 0.98),
                                 eps=1e-9)

    # Load checkpoint if exists
    try:
        checkpoint_in = open(
            os.path.join(hp.checkpoint_path, 'checkpoint.txt'), 'r')
        args.restore_step = int(checkpoint_in.readline().strip())
        checkpoint_in.close()
        checkpoint = torch.load(
            os.path.join(hp.checkpoint_path,
                         'checkpoint_%08d.pth' % args.restore_step))
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        print("\n---Model Restored at Step %d---\n" % args.restore_step)
    except:

        print("\n---Start New Training---\n")
        if not os.path.exists(hp.checkpoint_path):
            os.mkdir(hp.checkpoint_path)
    # Get dataset
    dataset = FastSpeechDataset()

    # Optimizer and loss

    scheduled_optim = ScheduledOptim(optimizer, hp.d_model, hp.n_warm_up_step,
                                     args.restore_step)
    fastspeech_loss = FastSpeechLoss().to(device)
    print("Defined Optimizer and Loss Function.")

    # Init logger
    if not os.path.exists(hp.logger_path):
        os.mkdir(hp.logger_path)

    # Define Some Information
    Time = np.array([])
    Start = time.perf_counter()

    # Training
    model = model.train()
    t_l = 0.0
    for epoch in range(hp.epochs):
        # Get Training Loader
        training_loader = DataLoader(dataset,
                                     batch_size=hp.batch_size**2,
                                     shuffle=True,
                                     collate_fn=collate_fn,
                                     drop_last=True,
                                     num_workers=0)
        total_step = hp.epochs * len(training_loader) * hp.batch_size

        for i, batchs in enumerate(training_loader):
            for j, data_of_batch in enumerate(batchs):
                start_time = time.perf_counter()

                current_step = i * hp.batch_size + j + args.restore_step + \
                    epoch * len(training_loader)*hp.batch_size + 1

                # Init
                scheduled_optim.zero_grad()

                # Get Data
                condition1 = torch.from_numpy(
                    data_of_batch["condition1"]).long().to(device)
                condition2 = torch.from_numpy(
                    data_of_batch["condition2"]).long().to(device)
                mel_target = torch.from_numpy(
                    data_of_batch["mel_target"]).long().to(device)
                norm_f0 = torch.from_numpy(
                    data_of_batch["norm_f0"]).long().to(device)
                mel_in = torch.from_numpy(
                    data_of_batch["mel_in"]).float().to(device)
                D = torch.from_numpy(data_of_batch["D"]).int().to(device)
                mel_pos = torch.from_numpy(
                    data_of_batch["mel_pos"]).long().to(device)
                src_pos = torch.from_numpy(
                    data_of_batch["src_pos"]).long().to(device)
                lens = data_of_batch["lens"]
                max_mel_len = data_of_batch["mel_max_len"]
                #                 print(condition1,condition2)
                # Forward
                mel_output = model(src_seq1=condition1,
                                   src_seq2=condition2,
                                   mel_in=mel_in,
                                   src_pos=src_pos,
                                   mel_pos=mel_pos,
                                   mel_max_length=max_mel_len,
                                   length_target=D)

                #                 print(mel_target.size())
                #                 print(mel_output)
                #                 print(mel_postnet_output)

                # Cal Loss
                #                 mel_loss, mel_postnet_loss= fastspeech_loss(mel_output,                                                                            mel_postnet_output,mel_target,)
                #                 print(mel_output.shape,mel_target.shape)
                Loss = torch.nn.CrossEntropyLoss()
                predict = mel_output.transpose(1, 2)
                target1 = mel_target.long().squeeze()
                target2 = norm_f0.long().squeeze()
                target = ((target1 + target2) / 2).long().squeeze()

                #                 print(predict.shape,target.shape)
                #                 print(target.float().mean())
                losses = []
                #                 print(lens,target)
                for index in range(predict.shape[0]):
                    #                     print(predict[i,:,:lens[i]].shape,target[i,:lens[i]].shape)
                    losses.append(
                        Loss(predict[index, :, :lens[index]].transpose(0, 1),
                             target[index, :lens[index]]).unsqueeze(0))


#                     losses.append(0.5*Loss(predict[index,:,:lens[index]].transpose(0,1),target2[index,:lens[index]]).unsqueeze(0))
                total_loss = torch.cat(losses).mean()
                t_l += total_loss.item()

                #                 assert np.isnan(t_l)==False

                with open(os.path.join("logger", "total_loss.txt"),
                          "a") as f_total_loss:
                    f_total_loss.write(str(t_l) + "\n")

                # Backward
                if not np.isnan(t_l):
                    total_loss.backward()
                else:
                    print(condition1, condition2, D)

                # Clipping gradients to avoid gradient explosion
                nn.utils.clip_grad_norm_(model.parameters(),
                                         hp.grad_clip_thresh)

                # Update weights
                if args.frozen_learning_rate:
                    scheduled_optim.step_and_update_lr_frozen(
                        args.learning_rate_frozen)
                else:
                    scheduled_optim.step_and_update_lr()

                # Print
                if current_step % hp.log_step == 0:
                    Now = time.perf_counter()

                    str1 = "Epoch[{}/{}] Step[{}/{}]:".format(
                        epoch + 1, hp.epochs, current_step, total_step)
                    str2 = "Loss:{:.4f} ".format(t_l / hp.log_step)

                    str3 = "LR:{:.6f}".format(
                        scheduled_optim.get_learning_rate())
                    str4 = "T: {:.1f}s ETR:{:.1f}s.".format(
                        (Now - Start),
                        (total_step - current_step) * np.mean(Time))

                    print('\r' + str1 + ' ' + str2 + ' ' + str3 + ' ' + str4,
                          end='')
                    writer.add_scalar('loss', t_l / hp.log_step, current_step)
                    writer.add_scalar('lreaning rate',
                                      scheduled_optim.get_learning_rate(),
                                      current_step)

                    if hp.gpu_log_step != -1 and current_step % hp.gpu_log_step == 0:
                        os.system('nvidia-smi')

                    with open(os.path.join("logger", "logger.txt"),
                              "a") as f_logger:
                        f_logger.write(str1 + "\n")
                        f_logger.write(str2 + "\n")
                        f_logger.write(str3 + "\n")
                        f_logger.write(str4 + "\n")
                        f_logger.write("\n")

                    t_l = 0.0

                if current_step % hp.fig_step == 0 or current_step == 20:
                    f = plt.figure()
                    plt.matshow(mel_output[0].cpu().detach().numpy())
                    plt.savefig('out_predicted.png')
                    plt.matshow(
                        F.softmax(predict, dim=1).transpose(
                            1, 2)[0].cpu().detach().numpy())
                    plt.savefig('out_predicted_softmax.png')
                    writer.add_figure('predict', f, current_step)
                    plt.cla()

                    f = plt.figure(figsize=(8, 6))
                    #                   plt.matshow(mel_target[0].cpu().detach().numpy())
                    #                   x=np.arange(mel_target.shape[1])
                    #                   y=sample_from_discretized_mix_logistic(mel_output.transpose(1,2)).cpu().detach().numpy()[0]
                    #                   plt.plot(x,y)
                    sample = []
                    p = F.softmax(predict, dim=1).transpose(
                        1, 2)[0].detach().cpu().numpy()
                    for index in range(p.shape[0]):
                        sample.append(np.random.choice(200, 1, p=p[index]))
                    sample = np.array(sample)
                    plt.plot(np.arange(sample.shape[0]),
                             sample,
                             color='grey',
                             linewidth='1')
                    for index in range(D.shape[1]):
                        x = np.arange(D[0][index].cpu().numpy()
                                      ) + D[0][:index].cpu().numpy().sum()
                        y = np.arange(D[0][index].detach().cpu().numpy())
                        if condition2[0][index].cpu().numpy() != 0:
                            y.fill(
                                (condition2[0][index].cpu().numpy() - 40.0) *
                                5)
                            plt.plot(x, y, color='blue')
                    plt.plot(np.arange(target.shape[1]),
                             target[0].squeeze().detach().cpu().numpy(),
                             color='red',
                             linewidth='1')
                    plt.savefig('out_target.png', dpi=300)
                    writer.add_figure('target', f, current_step)
                    plt.cla()

                    plt.close("all")

                if current_step % (hp.save_step) == 0:
                    print("save model at step %d ..." % current_step, end='')
                    torch.save(
                        {
                            'model': model.state_dict(),
                            'optimizer': optimizer.state_dict()
                        },
                        os.path.join(hp.checkpoint_path,
                                     'checkpoint_%08d.pth' % current_step))
                    checkpoint_out = open(
                        os.path.join(hp.checkpoint_path, 'checkpoint.txt'),
                        'w')
                    checkpoint_out.write(str(current_step))
                    checkpoint_out.close()

                    #                     os.system('python savefig.py')

                    print('save completed')

                end_time = time.perf_counter()
                Time = np.append(Time, end_time - start_time)
                if len(Time) == hp.clear_Time:
                    temp_value = np.mean(Time)
                    Time = np.delete(Time, [i for i in range(len(Time))],
                                     axis=None)
                    Time = np.append(Time, temp_value)
Пример #25
0
def inference(args):
    
    if args.target=='mnistm':
        args.source = 'usps'
    elif args.target=='usps':
        args.source = 'svhn'
    elif args.target=='svhn':
        args.source = 'mnistm'
    else:
        raise NotImplementedError(f"{args.target}: not implemented!")
    
    size = args.img_size
    t1 = transforms.Compose([
            transforms.Resize(size),
            transforms.Grayscale(3),
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
        ])

    valid_target_dataset = Digits_Dataset_Test(args.dataset_path, t1)
        
    valid_target_dataloader = DataLoader(valid_target_dataset,
                                             batch_size=512,
                                             num_workers=6)
        
         
    load = torch.load(
        f"./p3/result/3_2/{args.source}2{args.target}/best_model.pth",
        map_location='cpu')
        
    feature_extractor = FeatureExtractor()
    feature_extractor.load_state_dict(load['F'])
    feature_extractor.cuda()
    feature_extractor.eval()

    label_predictor = LabelPredictor()
    label_predictor.load_state_dict(load['C'])
    label_predictor.cuda()
    label_predictor.eval()
           
    out_preds = []
    out_fnames = []
    count=0
    for i,(imgs, fnames) in enumerate(valid_target_dataloader):
        bsize = imgs.size(0)

        imgs = imgs.cuda()

        features = feature_extractor(imgs)
        class_output = label_predictor(features)
        
        _, preds = class_output.max(1)
        preds = preds.detach().cpu()
        
        out_preds.append(preds)
        out_fnames += fnames
        
        count+=bsize
        print(f"\t [{count}/{len(valid_target_dataloader.dataset)}]", 
                                                        end="   \r")
        
    out_preds = torch.cat(out_preds)
    out_preds = out_preds.cpu().numpy()
    
    d = {'image_name':out_fnames, 'label':out_preds}
    df = pd.DataFrame(data=d)
    df = df.sort_values('image_name')
    df.to_csv(args.out_csv, index=False)
    print(f' [Info] finish predicting {args.dataset_path}')
Пример #26
0
                               encoding='utf8')

        # convert results to submission format
        convert(f'{args.save_result_path}/result.csv',
                f'{args.save_result_path}/submission.csv')

        # score
        if args.score:
            s = score(args.ref_file, f'{args.save_result_path}/submission.csv')
            print('\t[Info] score:', s)


if __name__ == '__main__':
    args = parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    os.environ['CUDA_LAUNCH_BLOCKING'] = "1"

    tokenizer = BertJapaneseTokenizer.from_pretrained(
        pretrained_weights)  #, do_lower_case=True)

    dataset = Cinnamon_Dataset_Testing(
        f'/media/D/ADL2020-SPRING/project/cinnamon/{args.dev_or_test}/',
        tokenizer, args.delta)
    dataloader = DataLoader(dataset,
                            batch_size=1,
                            collate_fn=dataset.collate_fn,
                            shuffle=False)

    inference(args, tokenizer, dataloader)
Пример #27
0
def train(num_gpus, rank, group_name, output_directory, log_directory,
          checkpoint_path):
    # Get device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    torch.manual_seed(hp.seed)
    torch.cuda.manual_seed(hp.seed)

    #=====START: ADDED FOR DISTRIBUTED======
    if num_gpus > 1:
        init_distributed(rank, num_gpus, group_name, **dist_config)
    #=====END:   ADDED FOR DISTRIBUTED======

    criterion = WaveGlowLoss(hp.sigma)
    model = WaveGlow().cuda()

    #=====START: ADDED FOR DISTRIBUTED======
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)
    #=====END:   ADDED FOR DISTRIBUTED======

    learning_rate = hp.learning_rate
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    if hp.fp16_run:
        from apex import amp
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

    # Load checkpoint if one exists
    iteration = 0
    if checkpoint_path:
        model, optimizer, iteration = load_checkpoint(checkpoint_path, model,
                                                      optimizer)
        iteration += 1  # next iteration is iteration + 1

    # Get dataset
    dataset = FastSpeechDataset()

    # Get training loader
    print("Get Training Loader")
    training_loader = DataLoader(dataset,
                                 batch_size=hp.batch_size,
                                 shuffle=True,
                                 collate_fn=collate_fn,
                                 drop_last=True,
                                 num_workers=0)

    if rank == 0:
        if not os.path.isdir(output_directory):
            os.makedirs(output_directory)
            os.chmod(output_directory, 0o775)
        print("output directory", output_directory)

    if hp.with_tensorboard and rank == 0:
        logger = prepare_directories_and_logger(output_directory,
                                                log_directory)

    model = model.train()
    epoch_offset = max(0, int(iteration / len(training_loader)))
    beta = hp.batch_size
    print("Total Epochs: {}".format(hp.epochs))
    print("Batch Size: {}".format(hp.batch_size))

    # ================ MAIN TRAINNIG LOOP! ===================
    for epoch in range(epoch_offset, hp.epochs):
        print("Epoch: {}".format(epoch))
        for i, data_of_batch in enumerate(training_loader):
            model.zero_grad()

            if not hp.pre_target:
                # Prepare Data
                src_seq = data_of_batch["texts"]
                src_pos = data_of_batch["pos"]

                src_seq = torch.from_numpy(src_seq).long().to(device)
                src_pos = torch.from_numpy(src_pos).long().to(device)
                alignment_target = get_alignment(src_seq,
                                                 tacotron2).float().to(device)
                # For Data Parallel

            else:
                # Prepare Data
                audio = data_of_batch["audios"]
                src_seq = data_of_batch["texts"]
                src_pos = data_of_batch["pos"]
                mel_tgt = data_of_batch["mels"]
                alignment_target = data_of_batch["alignment"]

                audio = torch.cat(audio).to(device)
                src_seq = torch.from_numpy(src_seq).long().to(device)
                src_pos = torch.from_numpy(src_pos).long().to(device)
                alignment_target = torch.from_numpy(
                    alignment_target).float().to(device)
                mel_tgt = torch.from_numpy(mel_tgt).float().to(device)
                # For Data Parallel
                mel_max_length = mel_tgt.size(1)

            outputs = model(src_seq, src_pos, audio, mel_max_length,
                            alignment_target)
            _, _, _, duration_predictor = outputs
            max_like, dur_loss = criterion(outputs, alignment_target)
            # mel_loss = criterion(outputs, alignment_target, mel_tgt)
            loss = max_like + dur_loss

            loss.backward()
            reduced_loss = loss.item()
            print('{}:\t{:.9f}'.format(iteration, reduced_loss))

            #grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hp.grad_clip_thresh)a
            '''if iteration % 8 == 0:
                optimizer.step()
                model.zero_grad()'''
            optimizer.step()

            if hp.with_tensorboard and rank == 0:
                logger.log_training(reduced_loss, dur_loss, learning_rate,
                                    iteration)

            if (iteration % hp.save_step == 0):
                if rank == 0:
                    # logger.log_alignment(model, mel_predict, iteration)
                    checkpoint_path = "{}/TTSglow_{}".format(
                        output_directory, iteration)
                    save_checkpoint(model, optimizer, learning_rate, iteration,
                                    checkpoint_path)

            iteration += 1
def cnn_train(net, user_opts, is_training=True):

    opts = dict()
    opts['expDir'] = 'Exp'
    opts['continue'] = -1
    opts['batchSize'] = 10
    opts['numSubBatches'] = 1
    opts['train'] = []
    opts['val'] = []
    opts['gpu'] = []
    opts['numEpochs'] = 5
    opts['learningRate'] = 0.001
    opts['weightDecay'] = 0.0005
    opts['momentum'] = 0.9
    opts['randomSeed'] = 0
    opts['folder_map'] = []
    opts['test_data_idx'] = []
    opts['train_data_idx'] = []
    opts['plotStatistics'] = True
    opts['silent'] = False

    opts = arg_parse(opts, user_opts)
    if 'data_loader_train' not in opts or 'data_loader_val' not in opts:
        opts['data_loader_train'] = DataLoader(opts['train_data_idx'],
                                               opts['teethRegionDetector'])
        opts['data_loader_val'] = DataLoader(opts['test_data_idx'],
                                             opts['teethRegionDetector'])

    if not os.path.isdir(opts['expDir']):
        os.mkdir(opts['expDir'])
    evaluate_mode = False

    def model_path(ep):
        return os.path.join(opts['expDir'], 'net-epoch-' + str(ep),
                            'model.ckpt')

    def model_folder_path(ep):
        return os.path.join(opts['expDir'], 'net-epoch-' + str(ep))

    model_figure_path = os.path.join(opts['expDir'], 'net-train.pdf')
    fig = plt.gcf()
    fig.show()
    fig.canvas.draw()
    sess = tf.Session(config=net.config)
    if opts['continue'] is not None:
        prev_pos_1 = max(
            0, min(opts['continue'], find_last_checkpoint(opts['expDir'])))
    else:
        prev_pos_1 = max(0, find_last_checkpoint(opts['expDir']))

    start_1 = prev_pos_1 + 1
    if prev_pos_1 >= 1:
        print('Resuming by loading epoch', str(prev_pos_1))
        stats, sess = load_state(model_folder_path(prev_pos_1),
                                 model_path(prev_pos_1), net.saver, sess)

        if sess is None or stats is None:
            sess.run(tf.global_variables_initializer())
            stats = dict()
            stats['train'] = []
            stats['val'] = []
            print('Failed to load. Starting with epoch ', str(start_1), '\n')
        else:
            print('Continuing at epoch ', str(start_1), '\n')
    else:
        sess.run(tf.global_variables_initializer())
        if net.load_pre_trained_model_func is not None:
            net.load_pre_trained_model_func(sess)

        stats = dict()
        stats['train'] = []
        stats['val'] = []
        print('Starting at epoch ', str(start_1), '\n')

    state = dict()
    opts['session'] = sess

    timer = Timer()
    for ep in range(start_1 - 1, opts['numEpochs']):
        # Set the random seed based on the epoch and opts.randomSeed.
        # This is important for reproducibility, including when training
        # is restarted from a checkpoint.
        epoch = ep + 1
        print('     Epoch # ' + str(epoch))
        random.seed(epoch + opts['randomSeed'])

        # Train for one epoch
        params = opts
        params['epoch'] = epoch

        if is_training:
            [net, state] = process_epoch(net, state, params, timer, 'train')
            [net, state] = process_epoch(net, state, params, timer, 'val')
        else:
            [net, state] = process_epoch(net,
                                         state,
                                         params,
                                         timer,
                                         'val',
                                         training=False)

        if not evaluate_mode:
            save_state(model_folder_path(epoch), model_path(epoch), net, state,
                       opts['silent'])
        last_stats = state['stats']

        stats['train'].append(last_stats['train'])
        stats['val'].append(last_stats['val'])

        save_stats(model_folder_path(epoch), stats)

        if opts['plotStatistics']:
            plot_stats(fig, stats, model_figure_path)

    plt.close(fig)
    return net, sess, stats
Пример #29
0
def main(args):
    # Get device
    device = torch.device('cuda'if torch.cuda.is_available()else 'cpu')

    # Define model
    model = nn.DataParallel(FastSpeech()).to(device)
    print("Model Has Been Defined")
    num_param = utils.get_param_num(model)
    print('Number of FastSpeech Parameters:', num_param)

    # Get dataset
    dataset = FastSpeechDataset()

    # Optimizer and loss
    optimizer = torch.optim.Adam(
        model.parameters(), betas=(0.9, 0.98), eps=1e-9)
    scheduled_optim = ScheduledOptim(optimizer,
                                     hp.d_model,
                                     hp.n_warm_up_step,
                                     args.restore_step)
    fastspeech_loss = FastSpeechLoss().to(device)
    print("Defined Optimizer and Loss Function.")

    # Load checkpoint if exists
    try:
        checkpoint = torch.load(os.path.join(
            hp.checkpoint_path, 'checkpoint_%d.pth.tar' % args.restore_step))
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        print("\n---Model Restored at Step %d---\n" % args.restore_step)
    except:
        print("\n---Start New Training---\n")
        if not os.path.exists(hp.checkpoint_path):
            os.mkdir(hp.checkpoint_path)

    # Init logger
    if not os.path.exists(hp.logger_path):
        os.mkdir(hp.logger_path)

    # Define Some Information
    Time = np.array([])
    Start = time.clock()

    # Training
    model = model.train()

    for epoch in range(hp.epochs):
        # Get Training Loader
        training_loader = DataLoader(dataset,
                                     batch_size=hp.batch_size**2,
                                     shuffle=True,
                                     collate_fn=collate_fn,
                                     drop_last=True,
                                     num_workers=0)
        total_step = hp.epochs * len(training_loader) * hp.batch_size

        for i, batchs in enumerate(training_loader):
            for j, data_of_batch in enumerate(batchs):
                start_time = time.clock()

                current_step = i * hp.batch_size + j + args.restore_step + \
                    epoch * len(training_loader)*hp.batch_size + 1

                # Init
                scheduled_optim.zero_grad()

                # Get Data
                character = torch.from_numpy(
                    data_of_batch["text"]).long().to(device)
                mel_target = torch.from_numpy(
                    data_of_batch["mel_target"]).float().to(device)
                D = torch.from_numpy(data_of_batch["D"]).int().to(device)
                mel_pos = torch.from_numpy(
                    data_of_batch["mel_pos"]).long().to(device)
                src_pos = torch.from_numpy(
                    data_of_batch["src_pos"]).long().to(device)
                max_mel_len = data_of_batch["mel_max_len"]

                # Forward
                # 注意:此处训练时没有将标准的时长送入decoder,还是将length regular输出的时长送了进去,和论文的叙述不符
                mel_output, mel_postnet_output, duration_predictor_output = model(character,
                                                                                  src_pos,
                                                                                  mel_pos=mel_pos,
                                                                                  mel_max_length=max_mel_len,
                                                                                  length_target=D)

                # print(mel_target.size())
                # print(mel_output.size())

                # Cal Loss
                mel_loss, mel_postnet_loss, duration_loss = fastspeech_loss(mel_output,
                                                                            mel_postnet_output,
                                                                            duration_predictor_output,
                                                                            mel_target,
                                                                            D)
                total_loss = mel_loss + mel_postnet_loss + duration_loss
                # 三种loss的比例是1:1:1.

                # Logger
                t_l = total_loss.item()
                m_l = mel_loss.item()
                m_p_l = mel_postnet_loss.item()
                d_l = duration_loss.item()

                with open(os.path.join("logger", "total_loss.txt"), "a") as f_total_loss:
                    f_total_loss.write(str(t_l)+"\n")

                with open(os.path.join("logger", "mel_loss.txt"), "a") as f_mel_loss:
                    f_mel_loss.write(str(m_l)+"\n")

                with open(os.path.join("logger", "mel_postnet_loss.txt"), "a") as f_mel_postnet_loss:
                    f_mel_postnet_loss.write(str(m_p_l)+"\n")

                with open(os.path.join("logger", "duration_loss.txt"), "a") as f_d_loss:
                    f_d_loss.write(str(d_l)+"\n")

                # Backward
                total_loss.backward()

                # Clipping gradients to avoid gradient explosion
                nn.utils.clip_grad_norm_(
                    model.parameters(), hp.grad_clip_thresh)

                # Update weights
                if args.frozen_learning_rate:
                    scheduled_optim.step_and_update_lr_frozen(
                        args.learning_rate_frozen)
                else:
                    scheduled_optim.step_and_update_lr()

                # Print
                if current_step % hp.log_step == 0:
                    Now = time.clock()

                    str1 = "Epoch [{}/{}], Step [{}/{}]:".format(
                        epoch+1, hp.epochs, current_step, total_step)
                    str2 = "Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Duration Loss: {:.4f};".format(
                        m_l, m_p_l, d_l)
                    str3 = "Current Learning Rate is {:.6f}.".format(
                        scheduled_optim.get_learning_rate())
                    str4 = "Time Used: {:.3f}s, Estimated Time Remaining: {:.3f}s.".format(
                        (Now-Start), (total_step-current_step)*np.mean(Time))

                    print("\n" + str1)
                    print(str2)
                    print(str3)
                    print(str4)

                    with open(os.path.join("logger", "logger.txt"), "a") as f_logger:
                        f_logger.write(str1 + "\n")
                        f_logger.write(str2 + "\n")
                        f_logger.write(str3 + "\n")
                        f_logger.write(str4 + "\n")
                        f_logger.write("\n")

                if current_step % hp.save_step == 0:
                    torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict(
                    )}, os.path.join(hp.checkpoint_path, 'checkpoint_%d.pth.tar' % current_step))
                    print("save model at step %d ..." % current_step)

                end_time = time.clock()
                Time = np.append(Time, end_time - start_time)
                if len(Time) == hp.clear_Time:
                    temp_value = np.mean(Time)
                    Time = np.delete(
                        Time, [i for i in range(len(Time))], axis=None)
                    Time = np.append(Time, temp_value)
Пример #30
0
    x_train, y_train, x_test, y_test = data
    m.set_data((x_train, y_train), (x_test, y_test))
    m.train(ROUND)


def train_gbdt_single(data, meta):
    depth = cfg.Depth[args.mode][args.data]
    lr = cfg.Learning_rate[args.mode][args.data]

    p = {'max_depth': depth, 'max_leaves': int(0.75 * 2 ** depth), 'topk': 0, 'loss': b"ce_column",
         'gamma': GAMMA, 'num_threads': num_threads, 'max_bins': meta['bin'], 'lr': lr, 'reg_l2': 1.0,
         'early_stop': 25, 'one_side': True, 'verbose': True,
         'min_samples': min_samples}

    x_train, y_train, x_test, y_test = data

    m = GBDTSingle(LIB, out_dim=meta['out'], params=p)
    m.set_data((x_train, y_train), (x_test, y_test))
    m.train_multi(ROUND)


if __name__ == '__main__':
    m = DataLoader()
    data, meta = m.get(args.data, False, args.N)
    if args.mode == 'gbdtmo':
        train_gbdt_multi(data, meta)
    elif args.mode == 'gbdtso':
        train_gbdt_single(data, meta)
    elif args.mode == 'lightgbm':
        train_lightgbm(data, meta)