Пример #1
0
    joint_transforms.RandomRotate(),
    joint_transforms.Resize((args['scale'], args['scale']))
])
val_joint_transform = joint_transforms.Compose(
    [joint_transforms.Resize((args['scale'], args['scale']))])
img_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406],
                         [0.229, 0.224, 0.225])  # maybe can optimized.
])
target_transform = transforms.ToTensor()

# Prepare Data Set.
train_set = ImageFolder(msd_training_root, joint_transform, img_transform,
                        target_transform)
print("Train set: {}".format(train_set.__len__()))
train_loader = DataLoader(train_set,
                          batch_size=args['train_batch_size'],
                          num_workers=0,
                          shuffle=True)
val_set = ImageFolder(msd_testing_root, val_joint_transform, img_transform,
                      target_transform)
print("Validation Set: {}".format(val_set.__len__()))
val_loader = DataLoader(val_set,
                        batch_size=args['val_batch_size'],
                        num_workers=8,
                        shuffle=False)

bce = nn.BCEWithLogitsLoss().cuda(device_ids[0])

Пример #2
0
# Transform Data.
joint_transform = joint_transforms.Compose([
    joint_transforms.RandomRotate(),
    joint_transforms.Resize((args['scale'], args['scale']))
])
img_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406],
                         [0.229, 0.224, 0.225])  # maybe can optimized.
])
target_transform = transforms.ToTensor()

# Prepare Data Set.
train_set = ImageFolder(msd_training_root, joint_transform, img_transform,
                        target_transform)
print("Train set: {}".format(train_set.__len__()))
train_loader = DataLoader(train_set,
                          batch_size=args['train_batch_size'],
                          num_workers=0,
                          shuffle=True)


def main():
    print(args)
    print(exp_name)

    net = BASE3(backbone_path).cuda(device_ids[0]).train()
    if args['add_graph']:
        writer.add_graph(net,
                         input_to_model=torch.rand(
                             args['train_batch_size'], 3, args['scale'],