def load_data(self, varbose=False, image_only=False, train_data_rate=0.7): print('Start loading image files...') if image_only: paths = glob(os.path.join(args.image_root, '*')) print('loaded {} data'.format(len(paths))) pivot = int(len(paths) * train_data_rate) paths_sep = {'train': paths[:pivot], 'test': paths[pivot:]} loader = lambda s: ImageLoader(paths_sep[s], transform=self.transform[s]) elif args.one_hot: sep_data = pd.read_pickle(args.pkl_path) loader = lambda s: ClassImageLoader(paths=sep_data[s], transform=self.transform[s]) else: df = pd.read_pickle(args.pkl_path) print('loaded {} data'.format(len(df))) pivot = int(len(df) * train_data_rate) df_shuffle = df.sample(frac=1) df_sep = {'train': df_shuffle[:pivot], 'test': df_shuffle[pivot:]} del df, df_shuffle loader = lambda s: FlickrDataLoader(args.image_root, df_sep[s], self.cols, transform=self.transform[s]) train_set = loader('train') test_set = loader('test') print('train:{} test:{} sets have already loaded.'.format( len(train_set), len(test_set))) return train_set, test_set
def load_data(self, varbose=False, image_only=False, train_data_rate=0.7): print('Start loading image files...') if image_only: paths = glob(os.path.join(args.image_root, '*')) print('loaded {} data'.format(len(paths))) pivot = int(len(paths) * train_data_rate) paths_sep = {'train': paths[:pivot], 'test': paths[pivot:]} loader = lambda s: ImageLoader(paths_sep[s], transform=self.transform[s]) else: df = pd.read_pickle(args.pkl_path) temp = pd.read_pickle( '/mnt/fs2/2019/okada/from_nitta/parm_0.3/sepalated_data_wo-outlier.pkl' ) df_ = temp.loc[:, self.cols].fillna(0) df_mean = df_.mean() df_std = df_.std() df.loc[:, self.cols] = (df.loc[:, self.cols].fillna(0) - df_mean) / df_std print('loaded {} signals data'.format(len(df))) df_shuffle = df.sample(frac=1) df_sep = { 'train': df_shuffle[df_shuffle['mode'] == 'train'], 'test': df_shuffle[df_shuffle['mode'] == 'test'] } del df, df_shuffle, temp loader = lambda s: FlickrDataLoader(args.image_root, df_sep[s], self.cols, transform=self.transform[s]) train_set = loader('train') test_set = loader('test') print('train:{} test:{} sets have already loaded.'.format( len(train_set), len(test_set))) return train_set, test_set
for k in range(splits): part = preds[k * (N // splits):(k + 1) * (N // splits), :] py = np.mean(part, axis=0) scores = [] for i in range(part.shape[0]): pyx = part[i, :] scores.append(entropy(pyx, py)) split_scores.append(np.exp(np.mean(scores))) return np.mean(split_scores), np.std(split_scores) if __name__ == '__main__': paths = glob(args.input_path + '*.jpg') transform = transforms.Compose([ transforms.Resize((args.input_size, ) * 2), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) dataset = ImageLoader(paths, transform=transform) print("Calculating Inception Score...") print( inception_score(dataset, cuda=args.gpu, batch_size=args.batch_size, resize=True, splits=10))
if __name__ == '__main__': transform = nn.Sequential( # transforms.Resize((args.input_size,) * 2), transforms.ConvertImageDtype(torch.float32), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ) s_bs = args.batch_size r_bs = args.batch_size if args.image_only: sep_data = glob(os.path.join(args.image_root, '*.png')) print('loaded {} data'.format(len(sep_data))) dataset = ImageLoader(paths=sep_data, transform=transform, inf=True) else: cols = ['tempC', 'uvIndex', 'visibility', 'windspeedKmph', 'cloudcover', 'humidity', 'pressure', 'DewPointC'] # get norm paramator temp = pd.read_pickle('/mnt/fs2/2019/Takamuro/m2_research/flicker_data/wwo/2016_17/lambda_0/outdoor_all_dbdate_wwo_weather_2016_17_delnoise_WoPerson_sky-10_L-05.pkl') df_ = temp.loc[:, cols].fillna(0) df_mean = df_.mean() df_std = df_.std() df = pd.read_pickle(args.s_pkl_path) df_.loc[:, cols] = (df_.loc[:, cols].fillna(0) - df_mean) / df_std df.loc[:, cols] = (df.loc[:, cols].fillna(0) - df_mean) / df_std df_sep = df[df['mode'] == 'test'] print('loaded {} signals data'.format(len(df_sep))) del df, df_, temp
#!/usr/bin/env python # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np from dataset import ImageLoader, Dataset, RandomPipeline, Config dirname = 'data' image_ind = 5 loader = ImageLoader(dirname, id='tmc') loader.load('image') loader.load('label') loader.load('mask') dataset = Dataset(images=loader.images) pipeline = RandomPipeline() pipeline.register('sigmoid_intensity', 'cropping') dataset.add_pipeline(pipeline) image, label = dataset[image_ind] print(np.unique(label)) shape = image.shape[1:] dataset = Dataset(images=loader.images) pipeline = RandomPipeline() pipeline.register('cropping') dataset.add_pipeline(pipeline) orig_image, label = dataset[image_ind] print(np.unique(label))
photo_list = sorted(glob(os.path.join(args.image_root, '*', '*.jpg'), recursive=True)) print('{} loaded'.format(len(photo_list))) # for FlickerDataLoader # transform = nn.Sequential( # transforms.ConvertImageDtype(torch.float32), # transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # ) # for ImageLoader transform = transforms.Compose([ transforms.Resize((args.input_size,)*2), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) dataset = ImageLoader(photo_list, transform=transform) loader = torch.utils.data.DataLoader( dataset, batch_size=args.batch_size, num_workers=args.num_workers, drop_last=True ) # load model estimator = torch.load(args.estimator_path) estimator.eval() estimator.to('cuda') bs = args.batch_size
from cunet import Conditional_UNet from ops import make_table_img if __name__ == '__main__': transform = transforms.Compose([ transforms.Resize((args.input_size, ) * 2), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) if args.image_only: sep_data = glob(os.path.join(args.image_root, '*.png')) print('loaded {} data'.format(len(sep_data))) dataset = ImageLoader(paths=sep_data, transform=transform, inf=True) else: s_li = ['sunny', 'cloudy', 'rain', 'snow', 'foggy'] os.makedirs(args.output_dir, exist_ok=True) sep_data = pd.read_pickle(args.pkl_path) sep_data = sep_data['test'] print('loaded {} data'.format(len(sep_data))) dataset = ClassImageLoader(paths=sep_data, transform=transform, inf=True) loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, num_workers=args.num_workers, drop_last=True)
import matplotlib.pyplot as plt from dataset import ImageLoader from discriminator import Discriminator from generator import Generator # IMG_ROOT = '../Scripts/dataset/train_image/' # LABEL_ROOT = '../Scripts/dataset/train_label/' BASE_PATH='/gpfs/workdir/houdberta/gan-getting-started/' MONET_PATH = os.path.join(BASE_PATH, 'monet_jpg') PHOTO_PATH = os.path.join(BASE_PATH, 'photo_jpg') BATCH_SIZE = 4 trainset = ImageLoader(MONET_PATH,PHOTO_PATH) loader = DataLoader(trainset,BATCH_SIZE,shuffle=True) device = 'cuda:0' def discriminator_real_loss(real): criterion = nn.BCEWithLogitsLoss() real_loss = criterion(real,torch.ones_like(real)) return real_loss def discriminator_fake_loss(generated): criterion = nn.BCEWithLogitsLoss() generated_loss = criterion(generated,torch.zeros_like(generated)) return generated_loss def id_loss(real,generated,Lambda=2e-4):
os.system('mkdir {0}'.format(opt.checkpoints_folder)) print('Model checkpoints directory created') ##checking for GPU if available cudnn.benchmark = True batch_size = opt.batchSize if torch.cuda.is_available() and not opt.cuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) #Loading training and test data traindataset = ImageLoader(image_folder = 'samples_generated', label_csv = 'sample_text.csv', \ transform =transforms.Compose([transforms.Resize((32,100)), transforms.ToTensor()])) assert traindataset train_dataloader = DataLoader(traindataset, batch_size=batch_size, \ shuffle=True, num_workers=0,drop_last = True) testdataset = ImageLoader(image_folder = 'samples_generated', label_csv = 'sample_text.csv', \ transform =transforms.Compose([transforms.Resize((32,100)), transforms.ToTensor()])) assert testdataset test_dataloader = DataLoader(testdataset, batch_size=batch_size, num_workers=0, drop_last=True)
if args.gpu > 0: classifer.to('cuda') cls_li = ['Clear', 'Clouds', 'Rain', 'Snow', 'Mist'] if args.image_only: transform = transforms.Compose([ transforms.Resize((args.input_size,)*2), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) paths = sorted(glob(os.path.join(args.image_root, '*.jpg'))) print('loaded {} data'.format(len(paths))) df = pd.DataFrame.from_dict({'paths': [path.split('/')[-1] for path in paths]}) df['pred_condition'] = None dataset = ImageLoader(paths=paths, transform=transform) if args.dataset == 'i2w': transform = transforms.Compose([ transforms.Resize((args.input_size,)*2), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) cls_li = ['sunny', 'cloudy', 'rain', 'snow', 'foggy'] df = pd.read_pickle(args.pkl_path) df = df['test'] print('loaded {} data'.format(len(df))) df['pred_condition'] = None dataset = ClassImageLoader(paths=df, transform=transform) elif args.dataset == 'flicker':