Пример #1
0
            X2.append(iclasses[label])
            labels.append(0)
    categoricals = {"匹配":1, "不匹配":0}
    return X1, X2, labels, categoricals

X1, X2, y, classes = convert_to_pairs(X, y, classes)
X1_train = X1[:-1000]
X2_train = X2[:-1000]
y_train = y[:-1000]

X1_test = X1[-1000:]
X2_test = X2[-1000:]
y_test = y[-1000:]

num_classes = len(classes)
tokenizer = SimpleTokenizer()
tokenizer.fit(X1 + X2)
X1_train = tokenizer.transform(X1_train)
X2_train = tokenizer.transform(X2_train)

maxlen = 48
hdims = 128
epochs = 2

X1_train = sequence.pad_sequences(
    X1_train, 
    maxlen=maxlen,
    dtype="int32",
    padding="post",
    truncating="post",
    value=0
Пример #2
0
        delta = self.epsilon * grads / (tf.norm(grads) + 1e-6)  # 计算扰动
        embeddings.assign_add(delta)  # 添加扰动到Embedding矩阵
        results = super(AdversarialTrainer,
                        self).train_step(data)  # 执行普通的train_step
        embeddings.assign_sub(delta)  # 删除Embedding矩阵上的扰动
        return results


X, y, classes = load_hotel_comment()
X_train, X_test, y_train, y_test = train_test_split(X,
                                                    y,
                                                    train_size=0.6,
                                                    random_state=7384672)

num_classes = len(classes)
tokenizer = SimpleTokenizer()
tokenizer.fit(X_train)

maxlen = find_best_maxlen(X_train)
# maxlen = 256


def create_dataset(X, y, maxlen=maxlen):
    X = tokenizer.transform(X)
    X = sequence.pad_sequences(X,
                               maxlen=maxlen,
                               dtype="int32",
                               padding="post",
                               truncating="post",
                               value=0.0)
    y = tf.keras.utils.to_categorical(y)
from pooling import MaskGlobalMaxPooling1D
from pooling import MaskGlobalAveragePooling1D
from dataset import SimpleTokenizer, find_best_maxlen
from dataset import load_THUCNews_title_label
from dataset import load_weibo_senti_100k
from dataset import load_simplifyweibo_4_moods
from dataset import load_hotel_comment

X, y, classes = load_hotel_comment()
X_train, X_test, y_train, y_test = train_test_split(X,
                                                    y,
                                                    train_size=0.8,
                                                    random_state=7384672)

num_classes = len(classes)
tokenizer = SimpleTokenizer()
tokenizer.fit(X_train)
X_train = tokenizer.transform(X_train)

maxlen = 48
maxlen = find_best_maxlen(X_train)

X_train = sequence.pad_sequences(X_train,
                                 maxlen=maxlen,
                                 dtype="int32",
                                 padding="post",
                                 truncating="post",
                                 value=0.0)
y_train = tf.keras.utils.to_categorical(y_train)

num_words = len(tokenizer)
Пример #4
0
from dataset import load_THUCNews_title_label
from dataset import load_weibo_senti_100k
from dataset import load_simplifyweibo_4_moods
from dataset import load_simplifyweibo_3_moods
from dataset import load_hotel_comment

# 来自Transformer的激活函数,效果略有提升
def gelu(x):
    return 0.5 * x * (1.0 + tf.math.erf(x / tf.sqrt(2.0)))

X, y, classes = load_hotel_comment()
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=73672)
class_weight = balance_class_weight(y_train)

num_classes = len(classes)
tokenizer = SimpleTokenizer(min_freq=32)
tokenizer.fit(X_train)
X_train = tokenizer.transform(X_train)

maxlen = 48
maxlen = find_best_maxlen(X_train)

X_train = sequence.pad_sequences(
    X_train, 
    maxlen=maxlen,
    dtype="int32",
    padding="post",
    truncating="post",
    value=0
)
y_train = tf.keras.utils.to_categorical(y_train, num_classes)

i, j = split_index(size=len(files))

files_train = files[:i]
files_val = files[i:j]
files_test = files[j:]


# train tokenizer
def Xiter(files):
    for content, label in gen(files):
        yield content


tokenizer = SimpleTokenizer()
tokenizer.fit(*[Xiter(files)])


class DataGenerator:
    def __init__(self, files, loop):
        self.files = files
        self.loop = loop

    def __call__(self):
        for _ in range(self.loop):
            random.shuffle(self.files)
            for content, label in gen(self.files):
                content = content[:maxlen]
                content = tokenizer.transform([content])[0]
                label = tf.keras.utils.to_categorical(label, num_classes)
        loss = tf.math.maximum(ploss - nloss + self.margin, 0.0)
        self.add_loss(tf.reduce_mean(loss))
        return loss


Xa, Xp, Xn, classes = convert_to_triplet(load_lcqmc)
Xa_train = Xa[:-1000]
Xp_train = Xp[:-1000]
Xn_train = Xn[:-1000]

Xa_test = Xa[:-1000]
Xp_test = Xp[:-1000]
Xn_test = Xn[:-1000]

num_classes = len(classes)
tokenizer = SimpleTokenizer()
tokenizer.fit(Xa)


def pad(X, maxlen):
    X = sequence.pad_sequences(X,
                               maxlen=maxlen,
                               dtype="int32",
                               padding="post",
                               truncating="post",
                               value=0)
    return X


def create_dataset(Xa, Xp, Xn, maxlen):
    Xa = tokenizer.transform(Xa)