Пример #1
0
        def k_fold(folder_k):
            folder_k_fold = SAVE_SETS + "/K-fold"
            if not os.path.exists(folder_k_fold): os.makedirs(folder_k_fold)

            def folder_k_lines(dataset):
                random.shuffle(dataset)
                n = int(len(dataset) / folder_k)
                r = len(dataset) % folder_k
                lines = []
                a = 1
                start = 0
                for i in range(folder_k - 1):
                    if r == 0: a = 0
                    else: r = r - 1
                    lines = lines + ['folder{}:\n'.format(i + 1)
                                     ] + dataset[start:start + n + a]
                    start = start + n + a
                lines = lines + ['folder{}:\n'.format(i + 2)
                                 ] + dataset[start:len(dataset)]
                return lines

            dtset_hp.write_lines(folder_k_fold + "/SAMM_k_fold.txt",
                                 folder_k_lines(SAMM_all))
            dtset_hp.write_lines(folder_k_fold + "/micro_k_fold.txt",
                                 folder_k_lines(micro))
Пример #2
0
        def LOVO():
            folder_LOVO = SAVE_SETS + "/LOVO"
            if not os.path.exists(folder_LOVO): os.makedirs(folder_LOVO)

            random.shuffle(SAMM_all)
            random.shuffle(micro)

            dtset_hp.write_lines(folder_LOVO + "/SAMM_LOVO.txt", SAMM_all)
            dtset_hp.write_lines(folder_LOVO + "/micro_LOVO.txt", micro)
Пример #3
0
        def hold_out(ratio):
            folder_hold_out = SAVE_SETS + "/Hold-Out"
            if not os.path.exists(folder_hold_out):
                os.makedirs(folder_hold_out)

            micro_train, micro_test = train_test_split(micro,
                                                       test_size=1 - ratio,
                                                       random_state=0)
            SAMM_train, SAMM_test = train_test_split(SAMM_all,
                                                     test_size=1 - ratio,
                                                     random_state=0)

            micro_hold_out = ['trainval:\n'] + micro_train + ['test:\n'
                                                              ] + micro_test
            SAMM_hold_out = ['trainval:\n'] + SAMM_train + ['test:\n'
                                                            ] + SAMM_test

            dtset_hp.write_lines(folder_hold_out + "/SAMM_hold_out.txt",
                                 SAMM_hold_out)
            dtset_hp.write_lines(folder_hold_out + "/micro_hold_out.txt",
                                 micro_hold_out)
Пример #4
0
        def hold_out(ratio):
            folder_hold_out = SAVE_SETS + "/Hold-Out"
            if not os.path.exists(folder_hold_out):
                os.makedirs(folder_hold_out)

            micro_train, micro_test = train_test_split(micro,
                                                       test_size=1 - ratio,
                                                       random_state=0)
            macro_train, macro_test = train_test_split(macro,
                                                       test_size=1 - ratio,
                                                       random_state=0)

            micro_hold_out = ['trainval:\n'] + micro_train + ['test:\n'
                                                              ] + micro_test
            macro_hold_out = ['trainval:\n'] + macro_train + ['test:\n'
                                                              ] + macro_test

            ME2_train = micro_train + macro_train
            ME2_test = micro_test + macro_test
            random.shuffle(ME2_train)
            random.shuffle(ME2_test)

            ME2_hold_out = ['trainval:\n'] + ME2_train + ['test:\n'] + ME2_test

            dtset_hp.write_lines(folder_hold_out + "/ME2_hold_out.txt",
                                 ME2_hold_out)
            dtset_hp.write_lines(folder_hold_out + "/micro_hold_out.txt",
                                 micro_hold_out)
            dtset_hp.write_lines(folder_hold_out + "/macro_hold_out.txt",
                                 macro_hold_out)
Пример #5
0
        def LOSO():
            folder_LOSO = SAVE_SETS + "/LOSO"
            if not os.path.exists(folder_LOSO): os.makedirs(folder_LOSO)

            def loso_lines(dataset):
                random.shuffle(dataset)
                map_subject = {}
                for line in dataset:
                    subject = line.split()[0]
                    if subject in map_subject:
                        map_subject[subject].append(line)
                    else:
                        map_subject[subject] = [line]
                lines = []
                for i, value in enumerate(map_subject.values()):
                    lines = lines + ['subject{}:\n'.format(i + 1)] + value
                return lines

            dtset_hp.write_lines(folder_LOSO + "/SAMM_LOSO.txt",
                                 loso_lines(SAMM_all))
            dtset_hp.write_lines(folder_LOSO + "/micro_LOSO.txt",
                                 loso_lines(micro))
Пример #6
0
    def generate_dataset(self):

        wb = xlrd.open_workbook(SOURCE_DATA + "/SAMM_Micro_FACS_Codes.xlsx")
        sheet_micro = wb.sheet_by_name('MICRO_ONLY')
        nrows = sheet_micro.nrows

        allInfo = []
        micro_all = []
        SAMM_all = []

        for row_id in range(nrows):
            if row_id <= 10:
                continue
            folder = sheet_micro.cell_value(row_id, 0)
            video = str(sheet_micro.cell_value(row_id, 1)).split('_')[1]
            cls = "micro-expression"
            onset_frame = sheet_micro.cell_value(row_id, 3)
            apex_frame = sheet_micro.cell_value(row_id, 4)
            offset_frame = sheet_micro.cell_value(row_id, 5)

            info_line = "{} {} {} {} {} {}\n".format(folder, video, cls,
                                                     onset_frame, apex_frame,
                                                     offset_frame)
            allInfo.append(info_line)

            video_line = "{} {}\n".format(folder, video)
            micro_all.append(video_line)

        root, folders, _ = dtset_hp.return_oswalk(SOURCE_DATA)
        for folder in folders:
            videos_path = os.path.join(root, folder)
            _, videos, _ = dtset_hp.return_oswalk(videos_path)
            for video in videos:
                video_line = "{} {}\n".format(folder, video)
                SAMM_all.append(video_line)

        micro_all = list(set(micro_all))

        dtset_hp.write_lines(SAVE_SETS + "/all_Info.txt", allInfo)
        dtset_hp.write_lines(SAVE_SETS + "/SAMM_all.txt", SAMM_all)
        dtset_hp.write_lines(SAVE_SETS + "/micro_all.txt", micro_all)
Пример #7
0
    def generate_dataset(self):

        wb = xlrd.open_workbook(SOURCE_DATA + "/CAS(ME)^2code_final.xlsx")
        sheet_CASFEcode = wb.sheet_by_name('CASFEcode_final')
        sheet_namingRule1 = wb.sheet_by_name('naming rule1')
        sheet_namingRule2 = wb.sheet_by_name('naming rule2')

        video_map = {}  # { anger1:0401, ...} name to code
        for i in range(sheet_namingRule2.nrows):
            code = sheet_namingRule2.cell_value(i, 0)
            name = sheet_namingRule2.cell_value(i, 1)
            video_map[name] = code

        nrows = sheet_CASFEcode.nrows

        allInfo = []
        ME2_all = []
        micro_all = []
        macro_all = []
        for row_id in range(nrows):
            folder = sheet_namingRule1.cell_value(row_id, 1)
            video_name = sheet_CASFEcode.cell_value(row_id, 1).split('_')[0]
            video = video_map[video_name]
            cls = sheet_CASFEcode.cell_value(row_id, 7)
            onset_frame = sheet_CASFEcode.cell_value(row_id, 2)
            apex_frame = sheet_CASFEcode.cell_value(row_id, 3)
            offset_frame = sheet_CASFEcode.cell_value(row_id, 4)
            if offset_frame == 0:
                offset_frame = apex_frame
            if apex_frame == 0:
                apex_frame = (onset_frame + offset_frame) / 2

            info_line = "{} {} {} {} {} {}\n".format(folder, video, cls,
                                                     onset_frame, apex_frame,
                                                     offset_frame)
            allInfo.append(info_line)

            video_line = "{} {}\n".format(folder, video)

            if cls == "micro-expression":
                micro_all.append(video_line)

            if cls == "macro-expression":
                macro_all.append(video_line)

        root, folders, _ = dtset_hp.return_oswalk(SOURCE_DATA + '/rawpic')
        for folder in folders:
            videos_path = os.path.join(root, folder)
            _, videos, _ = dtset_hp.return_oswalk(videos_path)
            for video in videos:
                video = video.split('_')[1][0:4]
                video_line = "{} {}\n".format(folder, video)
                ME2_all.append(video_line)

        ME2_all = list(set(ME2_all))
        micro_all = list(set(micro_all))
        macro_all = list(set(macro_all))
        macro_all = [x for x in macro_all if x not in micro_all]

        dtset_hp.write_lines(SAVE_SETS + "/all_Info.txt", allInfo)
        dtset_hp.write_lines(SAVE_SETS + "/ME2_all.txt", ME2_all)
        dtset_hp.write_lines(SAVE_SETS + "/micro_all.txt", micro_all)
        dtset_hp.write_lines(SAVE_SETS + "/macro_all.txt", macro_all)