args = init_args() # manualSeed = random.randint(1, 10000) # fix seed manualSeed = 10 random.seed(manualSeed) np.random.seed(manualSeed) torch.manual_seed(manualSeed) cudnn.benchmark = True # alphabet = alphabet = utils.to_alphabet("H:/DL-DATASET/BaiduTextR/train.list") # store model path if not os.path.exists('./expr'): os.mkdir('./expr') # read train set # dataset = baiduDataset("H:/DL-DATASET/BaiduTextR/train_images/train_images", "H:/DL-DATASET/BaiduTextR/train.list", params.alphabet, True) dataset = baiduDataset( "H:/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/train.txt", params.alphabet, False, (params.imgW, params.imgH)) val_dataset = baiduDataset( "H:/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/test.txt", params.alphabet, False, (params.imgW, params.imgH)) # dataset = baiduDataset("/media/hane/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/train.txt", params.alphabet, False) # val_dataset = baiduDataset("/media/hane/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/test.txt", params.alphabet, False) train_loader = DataLoader(dataset, batch_size=params.batchSize, shuffle=True, num_workers=params.workers) # shuffle=True, just for time consuming. val_loader = DataLoader(val_dataset, batch_size=params.val_batchSize,
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device = torch.device("cpu") # alphabet = alphabet = utils.to_alphabet("H:/DL-DATASET/BaiduTextR/train.list") # store model path if not os.path.exists(params.experiment): os.mkdir(params.experiment) # read train set # dataset = baiduDataset("H:/DL-DATASET/BaiduTextR/train_images/train_images", "H:/DL-DATASET/BaiduTextR/train.list", params.alphabet, True) # dataset = baiduDataset("H:/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/train.txt", params.alphabet, False, (params.imgW, params.imgH)) # val_dataset = baiduDataset("H:/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/test.txt", params.alphabet, False, (params.imgW, params.imgH)) # dataset = baiduDataset("/media/hane/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/train.txt", params.alphabet, False) # val_dataset = baiduDataset("/media/hane/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/test.txt", params.alphabet, False) dataset = baiduDataset( "/uuz/song/datasets/ocr/train_items", "/home/song/workplace/OCR/ocr_idcard/label/train/train_label_{}.txt". format(params.experiment), params.alphabet, False, (params.imgW, params.imgH)) val_dataset = baiduDataset( "/uuz/song/datasets/ocr/train_items", "/home/song/workplace/OCR/ocr_idcard/label/val/val_label_{}.txt". format(params.experiment), params.alphabet, False, (params.imgW, params.imgH)) # /home/song/workplace/OCR/ocr_idcard/label/train/train_label_birth_d.txt train_loader = DataLoader(dataset, batch_size=params.batchSize, shuffle=True, num_workers=params.workers) # shuffle=True, just for time consuming. val_loader = DataLoader(val_dataset, batch_size=params.val_batchSize,
# args = init_args() # manualSeed = random.randint(1, 10000) #fix seed manualSeed = 10 random.seed(manualSeed) np.random.seed(manualSeed) torch.manual_seed(manualSeed) cudnn.benchmark = True device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # alphabet = alphabet = utils.to_alphabet("H:/DL-DATASET/BaiduTextR/train.list") # store model path if not os.path.exists('./expr'): os.mkdir('./expr') # read train set # dataset = baiduDataset("H:/DL-DATASET/BaiduTextR/train_images/train_images", "H:/DL-DATASET/BaiduTextR/train.list", params.alphabet, True) dataset = baiduDataset("data/vehicle/Image", "data/vehicle/Main/train.txt", params.alphabet, False, (params.imgW, params.imgH)) val_dataset = baiduDataset("data/vehicle/Image", "data/vehicle/Main/val.txt", params.alphabet, False, (params.imgW, params.imgH)) # val_dataset = baiduDataset("H:/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/test.txt", params.alphabet, False, (params.imgW, params.imgH)) # dataset = baiduDataset("/media/hane/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/train.txt", params.alphabet, False) # val_dataset = baiduDataset("/media/hane/DL-DATASET/360M/images", "E:/08-Github-resources/00-MY-GitHub-Entries/crnn_chinese_characters_rec-master/crnn_chinese_characters_rec-master/label/test.txt", params.alphabet, False) train_loader = DataLoader(dataset, batch_size=params.batchSize, shuffle=True, num_workers=params.workers) # shuffle=True, just for time consuming. val_loader = DataLoader(val_dataset, batch_size=params.val_batchSize, shuffle=True,
# args = init_args() # manualSeed = random.randint(1, 10000) #fix seed os.environ["CUDA_VISIBLE_DEVICES"] = "7" manualSeed = 10 random.seed(manualSeed) np.random.seed(manualSeed) torch.manual_seed(manualSeed) cudnn.benchmark = True device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # store model path if not os.path.exists('./expr'): os.mkdir('./expr') # read train set dataset = baiduDataset( "./data_chinese_tra/images_add_fake", "./data_chinese_tra/label_add_fake/train_add_fake.txt", params.alphabet, False, (params.imgW, params.imgH)) val_dataset = baiduDataset( "./data_chinese_tra/images_add_fake", "./data_chinese_tra/label_add_fake/val_add_fake.txt", params.alphabet, False, (params.imgW, params.imgH)) train_loader = DataLoader(dataset, batch_size=params.batchSize, shuffle=True, num_workers=params.workers) # shuffle=True, just for time consuming. val_loader = DataLoader(val_dataset, batch_size=params.val_batchSize, shuffle=True, num_workers=params.workers)