Пример #1
0
    if os.path.exists(save_path):
        shutil.rmtree(save_path)
    os.makedirs(save_path)

    if config.dataset_from_folder:
        train_dataloaders, val_dataloaders, train_labels_number, _ = get_dataloader_from_folder(
            data_root, config.image_size, transforms, mean, std,
            config.batch_size, config.multi_scale)
        train_dataloaders, val_dataloaders, train_labels_number_folds = [
            train_dataloaders
        ], [val_dataloaders], [train_labels_number]
    else:

        get_dataloader = GetDataloader(
            data_root,
            folds_split=folds_split,
            test_size=test_size,
            choose_dataset=config.choose_dataset,
            load_split_from_file=config.load_split_from_file)
        train_dataloaders, val_dataloaders, _, _ = get_dataloader.get_dataloader(
            config.batch_size,
            config.image_size,
            mean,
            std,
            transforms=transforms)

    for fold_index, [train_loader, valid_loader
                     ] in enumerate(zip(train_dataloaders, val_dataloaders)):
        if fold_index in config.selected_fold:
            demo_predicts = DemoResults(
                config,
                weight_path,
Пример #2
0
                                      gray_prob=config.gray_prob)
    else:
        transforms = None
    if config.dataset_from_folder:
        train_dataloaders, val_dataloaders = get_dataloader_from_folder(
            data_root, config.image_size, transforms, mean, std,
            config.batch_size, only_official, only_self, multi_scale,
            config.auto_aug)
        train_dataloaders, val_dataloaders = [train_dataloaders
                                              ], [val_dataloaders]
    else:
        get_dataloader = GetDataloader(
            data_root,
            folds_split=folds_split,
            test_size=test_size,
            only_self=only_self,
            only_official=only_official,
            selected_labels=selected_labels,
            val_official=val_official,
            load_split_from_file=load_split_from_file,
            auto_aug=auto_aug)
        train_dataloaders, val_dataloaders = get_dataloader.get_dataloader(
            config.batch_size,
            config.image_size,
            mean,
            std,
            transforms=transforms,
            multi_scale=multi_scale,
            val_multi_scale=val_multi_scale)

    for fold_index, [train_loader, valid_loader
                     ] in enumerate(zip(train_dataloaders, val_dataloaders)):
Пример #3
0
            pickle.dump({'seed': seed}, f, -1)

        return writer, TIMESTAMP


if __name__ == "__main__":
    config = get_classify_config()
    config.lr = 3e-4  # 重新设置学习率
    data_root = config.dataset_root
    folds_split = config.n_splits
    test_size = config.val_size
    mean = (0.485, 0.456, 0.406)
    std = (0.229, 0.224, 0.225)
    if config.augmentation_flag:
        transforms = DataAugmentation(config.erase_prob,
                                      full_aug=True,
                                      gray_prob=config.gray_prob)
    else:
        transforms = None
    get_dataloader = GetDataloader(data_root,
                                   folds_split=folds_split,
                                   test_size=test_size)
    train_dataloaders, val_dataloaders = get_dataloader.get_dataloader(
        config.batch_size, config.image_size, mean, std, transforms=transforms)

    for fold_index, [train_loader, valid_loader
                     ] in enumerate(zip(train_dataloaders, val_dataloaders)):
        if fold_index in config.selected_fold:
            train_val = TrainVal(config, fold_index)
            train_val.train(train_loader, valid_loader)
Пример #4
0
            config.data_local,
            config.image_size,
            transforms,
            mean,
            std,
            config.batch_size,
            multi_scale,
        )
        train_dataloaders, val_dataloaders, train_labels_number_folds = [
            train_dataloaders
        ], [val_dataloaders], [train_labels_number]
    else:
        get_dataloader = GetDataloader(
            config.data_local,
            folds_split=folds_split,
            test_size=test_size,
            label_names_path=config.local_data_root + 'label_id_name.json',
            choose_dataset=config.choose_dataset,
            load_split_from_file=config.load_split_from_file)

        train_dataloaders, val_dataloaders, train_labels_number_folds, _ = get_dataloader.get_dataloader(
            config.batch_size,
            config.image_size,
            mean,
            std,
            transforms=transforms,
            multi_scale=multi_scale,
            draw_distribution=False)

    for fold_index, [train_loader, valid_loader,
                     train_labels_number] in enumerate(