class SimpleDataManager(DataManager): def __init__(self, image_size, batch_size): super(SimpleDataManager, self).__init__() self.batch_size = batch_size #self.trans_loader = TransformLoader(image_size) self.trans_loader = MiniImTransformLoader(image_size) def get_data_loader(self, aug, n_support=1, n_query=1, no_aug_support=False, no_aug_query=False ): #parameters that would change on train/val set transform = self.trans_loader.get_composed_transform(aug) original_transform = self.trans_loader.get_composed_transform( aug=False) dataset = SimpleDataset(transform=transform, original_transform=original_transform, n_support=n_support, n_query=n_query, no_aug_support=no_aug_support, no_aug_query=no_aug_query) data_loader_params = dict(batch_size=self.batch_size, shuffle=True, num_workers=12, pin_memory=True) data_loader = torch.utils.data.DataLoader(dataset, **data_loader_params) return data_loader
def __init__(self, image_size, batch_size): super(SimpleDataManager, self).__init__() self.batch_size = batch_size self.trans_loader = MiniImTransformLoader(image_size)