def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.train_loss_heatmap = AverageMeter() self.train_loss_associate = AverageMeter() self.val_losses = AverageMeter() self.val_loss_heatmap = AverageMeter() self.val_loss_associate = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_loss_manager = PoseLossManager(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.heatmap_generator = HeatmapGenerator(configer) self.paf_generator = PafGenerator(configer) self.data_transformer = DataTransformer(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model()
def __init__(self, configer): self.configer = configer self.pose_vis = PoseVisualizer(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None
def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.pose_vis = PoseVisualizer(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.heatmap_generator = HeatmapGenerator(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None self._init_model()
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.vis = PoseVisualizer(configer) self.loss_manager = PoseLossManager(configer) self.model_manager = PoseModelManager(configer) self.data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.lr = None self.iters = None
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.val_loss_heatmap = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_loss_manager = PoseLossManager(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None
class RPNPose(object): """ The class for Pose Estimation. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.val_loss_heatmap = AverageMeter() self.val_loss_associate = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_loss_manager = PoseLossManager(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None def init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = self.module_utilizer.load_net(self.pose_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( self._get_parameters()) self.train_loader = self.pose_data_loader.get_trainloader() self.val_loader = self.pose_data_loader.get_valloader() self.mse_loss = self.pose_loss_manager.get_pose_loss('mse_loss') self.embeding_loss = self.pose_loss_manager.get_pose_loss( 'embedding_loss') def _get_parameters(self): return self.pose_net.parameters() def __train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.configer.plus_one('epoch') self.scheduler.step(self.configer.get('epoch')) # data_tuple: (inputs, heatmap, maskmap, vecmap) for i, (inputs, label, heatmap, maskmap, vecmap, tagmap, num_objects) in enumerate(self.train_loader): self.data_time.update(time.time() - start_time) # Change the data type. inputs, label, heatmap, maskmap, vecmap, tagmap = self.module_utilizer.to_device( inputs, label, heatmap, maskmap, vecmap, tagmap) # Forward pass. paf_out, heatmap_out, embed_out = self.pose_net(inputs) # Compute the loss of the train batch & backward. loss_label = self.mse_loss(embed_out.sum(1).squeeze(), label) loss_heatmap = self.mse_loss(heatmap_out, heatmap, maskmap) loss_paf = self.mse_loss(paf_out, vecmap, maskmap) loss_associate = self.embeding_loss(embed_out, tagmap, num_objects) loss = loss_label + loss_heatmap + loss_paf + loss_associate self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ self.configer.get('iters') % self.configer.get('solver', 'test_interval') == 0: self.__val() def __val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() with torch.no_grad(): for j, (inputs, label, heatmap, maskmap, vecmap, tagmap, num_objects) in enumerate(self.val_loader): # Change the data type. inputs, label, heatmap, maskmap, vecmap, tagmap = self.module_utilizer.to_device( inputs, label, heatmap, maskmap, vecmap, tagmap) # Forward pass. paf_out, heatmap_out, embed_out = self.pose_net(inputs) # Compute the loss of the val batch. loss_label = self.mse_loss(embed_out, label) loss_heatmap = self.mse_loss(heatmap_out, heatmap, maskmap) loss_paf = self.mse_loss(paf_out, vecmap, maskmap) loss_associate = self.embeding_loss(embed_out, tagmap, num_objects) loss = loss_label + loss_heatmap + loss_paf + loss_associate self.val_losses.update(loss.item(), inputs.size(0)) self.val_loss_heatmap.update(loss_heatmap.item(), inputs.size(0)) self.val_loss_associate.update(loss_associate.item(), inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.pose_net, metric='iters') Log.info('Loss Heatmap:{}, Loss Asso: {}'.format( self.val_loss_heatmap.avg, self.val_loss_associate.avg)) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.pose_net.train() def train(self): cudnn.benchmark = True while self.configer.get('epoch') < self.configer.get( 'solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get( 'solver', 'max_epoch'): break
class ConvPoseMachine(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_loss_manager = PoseLossManager(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.data_transformer = DataTransformer(configer) self.heatmap_generator = HeatmapGenerator(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.single_pose_detector() self.pose_net = self.module_utilizer.load_net(self.pose_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(self._get_parameters()) self.train_loader = self.pose_data_loader.get_trainloader() self.val_loader = self.pose_data_loader.get_valloader() self.mse_loss = self.pose_loss_manager.get_pose_loss('mse_loss') def _get_parameters(self): return self.pose_net.parameters() def __train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.configer.plus_one('epoch') self.scheduler.step(self.configer.get('epoch')) # data_tuple: (inputs, heatmap, maskmap, tagmap, num_objects) for i, data_dict in enumerate(self.train_loader): inputs = data_dict['img'] input_size = [inputs.size(3), inputs.size(2)] heatmap = self.heatmap_generator(data_dict['kpts'], input_size) self.data_time.update(time.time() - start_time) # Change the data type. inputs, heatmap = self.module_utilizer.to_device(inputs, heatmap) # self.pose_visualizer.vis_peaks(heatmap[0], inputs[0], name='cpm') # Forward pass. outputs = self.pose_net(inputs) # Compute the loss of the train batch & backward. loss = self.mse_loss(outputs, heatmap, maskmap) self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get('solver', 'display_iter') == 0: Log.info('Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'.format( self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ self.configer.get('iters') % self.configer.get('solver', 'test_interval') == 0: self.__val() def __val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() with torch.no_grad(): for j, data_dict in enumerate(self.val_loader): inputs = data_dict['img'] input_size = [inputs.size(3), inputs.size(2)] heatmap = self.heatmap_generator(data_dict['kpts'], input_size) # Change the data type. inputs, heatmap = self.module_utilizer.to_device(inputs, heatmap) # Forward pass. outputs = self.pose_net(inputs) # Compute the loss of the val batch. loss = self.mse_loss(outputs[-1], heatmap) self.val_losses.update(loss.item(), inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.pose_net, save_mode='iters') # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format( batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.pose_net.train() def train(self): cudnn.benchmark = True if self.configer.get('network', 'resume') is not None and self.configer.get('network', 'resume_val'): self.__val() while self.configer.get('epoch') < self.configer.get('solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get('solver', 'max_epoch'): break
class CapsulePoseTest(object): def __init__(self, configer): self.configer = configer self.pose_visualizer = PoseVisualizer(configer) self.pose_parser = PoseParser(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None def init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = self.module_utilizer.load_net(self.pose_net) self.pose_net.eval() def __test_img(self, image_path, json_path, raw_path, vis_path): Log.info('Image Path: {}'.format(image_path)) ori_img_rgb = ImageHelper.img2np(ImageHelper.pil_open_rgb(image_path)) cur_img_rgb = ImageHelper.resize(ori_img_rgb, self.configer.get( 'data', 'input_size'), interpolation=Image.CUBIC) ori_img_bgr = ImageHelper.bgr2rgb(ori_img_rgb) paf_avg, heatmap_avg, partmap_avg = self.__get_paf_and_heatmap( cur_img_rgb) all_peaks = self.__extract_heatmap_info(heatmap_avg) special_k, connection_all = self.__extract_paf_info( cur_img_rgb, paf_avg, partmap_avg, all_peaks) subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks) json_dict = self.__get_info_tree(cur_img_rgb, subset, candidate) for i in range(len(json_dict['objects'])): for index in range(len(json_dict['objects'][i]['keypoints'])): if json_dict['objects'][i]['keypoints'][index][2] == -1: continue json_dict['objects'][i]['keypoints'][index][0] *= ( ori_img_rgb.shape[1] / cur_img_rgb.shape[1]) json_dict['objects'][i]['keypoints'][index][1] *= ( ori_img_rgb.shape[0] / cur_img_rgb.shape[0]) image_canvas = self.pose_parser.draw_points(ori_img_bgr.copy(), json_dict) image_canvas = self.pose_parser.link_points(image_canvas, json_dict) cv2.imwrite(vis_path, image_canvas) cv2.imwrite(raw_path, ori_img_bgr) Log.info('Json Save Path: {}'.format(json_path)) with open(json_path, 'w') as save_stream: save_stream.write(json.dumps(json_dict)) def __get_info_tree(self, image_raw, subset, candidate): json_dict = dict() height, width, _ = image_raw.shape json_dict['image_height'] = height json_dict['image_width'] = width object_list = list() for n in range(len(subset)): if subset[n][-1] <= 1: continue object_dict = dict() object_dict['keypoints'] = np.zeros( (self.configer.get('data', 'num_keypoints'), 3)).tolist() for j in range(self.configer.get('data', 'num_keypoints')): index = subset[n][j] if index == -1: object_dict['keypoints'][j][0] = -1 object_dict['keypoints'][j][1] = -1 object_dict['keypoints'][j][2] = -1 else: object_dict['keypoints'][j][0] = candidate[index.astype( int)][0] object_dict['keypoints'][j][1] = candidate[index.astype( int)][1] object_dict['keypoints'][j][2] = 1 object_dict['score'] = subset[n][-2] object_list.append(object_dict) json_dict['objects'] = object_list return json_dict def __get_paf_and_heatmap(self, img_raw): multiplier = [ scale * self.configer.get('data', 'input_size')[0] / img_raw.shape[1] for scale in self.configer.get('data', 'scale_search') ] heatmap_avg = np.zeros((img_raw.shape[0], img_raw.shape[1], self.configer.get('data', 'num_keypoints'))) paf_avg = np.zeros((img_raw.shape[0], img_raw.shape[1], self.configer.get('network', 'paf_out'))) partmap_avg = np.zeros((img_raw.shape[0], img_raw.shape[1], self.configer.get('network', 'heatmap_out'))) for i, scale in enumerate(multiplier): img_test = cv2.resize(img_raw, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) img_test_pad, pad = PadImage(self.configer.get( 'network', 'stride'))(img_test) pad_right = pad[2] pad_down = pad[3] img_test_pad = ToTensor()(img_test_pad) img_test_pad = Normalize( mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(img_test_pad) with torch.no_grad(): img_test_pad = img_test_pad.unsqueeze(0).to(self.device) paf_out_list, partmap_out_list = self.pose_net(img_test_pad) paf_out = paf_out_list[-1] partmap_out = partmap_out_list[-1] partmap = partmap_out.data.squeeze().cpu().numpy().transpose( 1, 2, 0) paf = paf_out.data.squeeze().cpu().numpy().transpose(1, 2, 0) # self.pose_visualizer.vis_tensor(heatmap_out) heatmap = np.zeros((partmap.shape[0], partmap.shape[1], self.configer.get('data', 'num_keypoints'))) part_num = np.zeros((self.configer.get('data', 'num_keypoints'), )) for index in range(len(self.configer.get('details', 'limb_seq'))): a = self.configer.get('details', 'limb_seq')[index][0] - 1 b = self.configer.get('details', 'limb_seq')[index][1] - 1 heatmap_a = partmap[:, :, index * 4:index * 4 + 2]**2 heatmap_a = np.sqrt(np.sum(heatmap_a, axis=2).squeeze()) heatmap[:, :, a] = (heatmap[:, :, a] * part_num[a] + heatmap_a) / (part_num[a] + 1) part_num[a] += 1 heatmap_b = partmap[:, :, index * 4 + 2:index * 4 + 4]**2 heatmap_b = np.sqrt(np.sum(heatmap_b, axis=2).squeeze()) heatmap[:, :, b] = (heatmap[:, :, b] * part_num[b] + heatmap_b) / (part_num[b] + 1) part_num[b] += 1 heatmap = cv2.resize(heatmap, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:img_test_pad.size(2) - pad_down, :img_test_pad.size(3) - pad_right, :] heatmap = cv2.resize(heatmap, (img_raw.shape[1], img_raw.shape[0]), interpolation=cv2.INTER_CUBIC) partmap = cv2.resize(partmap, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) partmap = partmap[:img_test_pad.size(2) - pad_down, :img_test_pad.size(3) - pad_right, :] partmap = cv2.resize(partmap, (img_raw.shape[1], img_raw.shape[0]), interpolation=cv2.INTER_CUBIC) paf = cv2.resize(paf, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) paf = paf[:img_test_pad.size(2) - pad_down, :img_test_pad.size(3) - pad_right, :] paf = cv2.resize(paf, (img_raw.shape[1], img_raw.shape[0]), interpolation=cv2.INTER_CUBIC) partmap_avg = partmap_avg + partmap / len(multiplier) heatmap_avg = heatmap_avg + heatmap / len(multiplier) paf_avg = paf_avg + paf / len(multiplier) return paf_avg, heatmap_avg, partmap_avg def __extract_heatmap_info(self, heatmap_avg): all_peaks = [] peak_counter = 0 for part in range(self.configer.get('data', 'num_keypoints')): map_ori = heatmap_avg[:, :, part] map_gau = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map_gau.shape) map_left[1:, :] = map_gau[:-1, :] map_right = np.zeros(map_gau.shape) map_right[:-1, :] = map_gau[1:, :] map_up = np.zeros(map_gau.shape) map_up[:, 1:] = map_gau[:, :-1] map_down = np.zeros(map_gau.shape) map_down[:, :-1] = map_gau[:, 1:] peaks_binary = np.logical_and.reduce( (map_gau >= map_left, map_gau >= map_right, map_gau >= map_up, map_gau >= map_down, map_gau > self.configer.get('vis', 'part_threshold'))) peaks = zip( np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse peaks = list(peaks) peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks] ids = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [ peaks_with_score[i] + (ids[i], ) for i in range(len(ids)) ] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) return all_peaks def __extract_paf_info(self, img_raw, paf_avg, partmap_avg, all_peaks): connection_all = [] special_k = [] mid_num = self.configer.get('vis', 'mid_point_num') for k in range(len(self.configer.get('details', 'limb_seq'))): score_mid = paf_avg[:, :, [k * 2, k * 2 + 1]] # self.pose_visualizer.vis_paf(score_mid, img_raw, name='pa{}'.format(k)) candA = all_peaks[self.configer.get('details', 'limb_seq')[k][0] - 1] candB = all_peaks[self.configer.get('details', 'limb_seq')[k][1] - 1] nA = len(candA) nB = len(candB) if nA != 0 and nB != 0: connection_candidate = [] for i in range(nA): for j in range(nB): vec_a = partmap_avg[candA[i][1], candA[i][0], k * 4:k * 4 + 2] vec_b = -partmap_avg[candB[j][1], candB[j][0], k * 4 + 2:k * 4 + 4] norm_a = math.sqrt(vec_a[0] * vec_a[0] + vec_a[1] * vec_a[1]) + 1e-9 vec_a = np.divide(vec_a, norm_a) norm_b = math.sqrt(vec_b[0] * vec_b[0] + vec_b[1] * vec_b[1]) + 1e-9 vec_b = np.divide(vec_b, norm_b) vec = np.subtract(candB[j][:2], candA[i][:2]) sim_length = np.sum(vec_a * vec + vec_b * vec) / 2.0 norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) + 1e-9 vec = np.divide(vec, norm) startend = zip( np.linspace(candA[i][0], candB[j][0], num=mid_num), np.linspace(candA[i][1], candB[j][1], num=mid_num)) startend = list(startend) vec_x = np.array([ score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] for I in range(len(startend)) ]) vec_y = np.array([ score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] for I in range(len(startend)) ]) score_midpts = np.multiply( vec_x, vec[0]) + np.multiply(vec_y, vec[1]) score_with_dist_prior = sum(score_midpts) / len( score_midpts) score_with_dist_prior += min( 0.5 * img_raw.shape[0] / norm - 1, 0) num_positive = len( np.nonzero(score_midpts > self.configer.get( 'vis', 'limb_threshold'))[0]) criterion1 = num_positive > int( self.configer.get('vis', 'limb_pos_ratio') * len(score_midpts)) criterion2 = score_with_dist_prior > 0 if criterion1 and criterion2 and sim_length > self.configer.get( 'vis', 'sim_length'): connection_candidate.append([ i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2] ]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) connection = np.zeros((0, 5)) for c in range(len(connection_candidate)): i, j, s = connection_candidate[c][0:3] if i not in connection[:, 3] and j not in connection[:, 4]: connection = np.vstack( [connection, [candA[i][3], candB[j][3], s, i, j]]) if len(connection) >= min(nA, nB): break connection_all.append(connection) else: special_k.append(k) connection_all.append([]) return special_k, connection_all def __get_subsets(self, connection_all, special_k, all_peaks): # last number in each row is the total parts number of that person # the second last number in each row is the score of the overall configuration subset = -1 * np.ones( (0, self.configer.get('data', 'num_keypoints') + 2)) candidate = np.array( [item for sublist in all_peaks for item in sublist]) for k in self.configer.get('details', 'mini_tree'): if k not in special_k: partAs = connection_all[k][:, 0] partBs = connection_all[k][:, 1] indexA, indexB = np.array( self.configer.get('details', 'limb_seq')[k]) - 1 for i in range(len(connection_all[k])): # = 1:size(temp,1) found = 0 subset_idx = [-1, -1] for j in range(len(subset)): # 1:size(subset,1): if subset[j][indexA] == partAs[i] or subset[j][ indexB] == partBs[i]: subset_idx[found] = j found += 1 if found == 1: j = subset_idx[0] if (subset[j][indexB] != partBs[i]): subset[j][indexB] = partBs[i] subset[j][-1] += 1 subset[j][-2] += candidate[ partBs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them j1, j2 = subset_idx membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] if len(np.nonzero(membership == 2)[0]) == 0: # merge subset[j1][:-2] += (subset[j2][:-2] + 1) subset[j1][-2:] += subset[j2][-2:] subset[j1][-2] += connection_all[k][i][2] subset = np.delete(subset, j2, 0) else: # as like found == 1 subset[j1][indexB] = partBs[i] subset[j1][-1] += 1 subset[j1][-2] += candidate[ partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset elif not found: row = -1 * np.ones( self.configer.get('data', 'num_keypoints') + 2) row[indexA] = partAs[i] row[indexB] = partBs[i] row[-1] = 2 row[-2] = sum( candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] subset = np.vstack([subset, row]) return subset, candidate def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/pose', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') filename = test_img.rstrip().split('/')[-1] json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) if not os.path.exists(os.path.dirname(json_path)): os.makedirs(os.path.dirname(json_path)) if not os.path.exists(os.path.dirname(raw_path)): os.makedirs(os.path.dirname(raw_path)) if not os.path.exists(os.path.dirname(vis_path)): os.makedirs(os.path.dirname(vis_path)) self.__test_img(test_img, json_path, raw_path, vis_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) if not os.path.exists(base_dir): os.makedirs(base_dir) for filename in self.__list_dir(test_dir): image_path = os.path.join(test_dir, filename) json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) if not os.path.exists(os.path.dirname(json_path)): os.makedirs(os.path.dirname(json_path)) if not os.path.exists(os.path.dirname(raw_path)): os.makedirs(os.path.dirname(raw_path)) if not os.path.exists(os.path.dirname(vis_path)): os.makedirs(os.path.dirname(vis_path)) self.__test_img(image_path, json_path, raw_path, vis_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/pose', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) val_data_loader = self.pose_data_loader.get_valloader() count = 0 for i, (inputs, partmap, maskmap, vecmap) in enumerate(val_data_loader): for j in range(inputs.size(0)): count = count + 1 if count > 2: exit(1) Log.info(partmap.size()) ori_img = DeNormalize( mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(inputs[j]) ori_img = ori_img.numpy().transpose(1, 2, 0).astype(np.uint8) image_bgr = cv2.cvtColor(ori_img, cv2.COLOR_RGB2BGR) partmap_avg = partmap[j].numpy().transpose(1, 2, 0) heatmap_avg = np.zeros( (partmap_avg.shape[0], partmap_avg.shape[1], self.configer.get('data', 'num_keypoints'))) part_num = np.zeros((self.configer.get('data', 'num_keypoints'), )) for index in range( len(self.configer.get('details', 'limb_seq'))): a = self.configer.get('details', 'limb_seq')[index][0] - 1 b = self.configer.get('details', 'limb_seq')[index][1] - 1 heatmap_a = partmap_avg[:, :, index * 4:index * 4 + 2]**2 heatmap_a = np.sqrt(np.sum(heatmap_a, axis=2).squeeze()) heatmap_avg[:, :, a] = (heatmap_avg[:, :, a] * part_num[a] + heatmap_a) / (part_num[a] + 1) part_num[a] += 1 heatmap_b = partmap_avg[:, :, index * 4 + 2:index * 4 + 4]**2 heatmap_b = np.sqrt(np.sum(heatmap_b, axis=2).squeeze()) heatmap_avg[:, :, b] = (heatmap_avg[:, :, b] * part_num[b] + heatmap_b) / (part_num[b] + 1) part_num[b] += 1 partmap_avg = cv2.resize( partmap_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) heatmap_avg = cv2.resize( heatmap_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) paf_avg = vecmap[j].numpy().transpose(1, 2, 0) paf_avg = cv2.resize(paf_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) self.pose_visualizer.vis_peaks(heatmap_avg, image_bgr) self.pose_visualizer.vis_paf(paf_avg, image_bgr) all_peaks = self.__extract_heatmap_info(heatmap_avg) special_k, connection_all = self.__extract_paf_info( image_bgr, paf_avg, partmap_avg, all_peaks) subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks) json_dict = self.__get_info_tree(image_bgr, subset, candidate) image_canvas = self.pose_parser.draw_points( image_bgr, json_dict) image_canvas = self.pose_parser.link_points( image_canvas, json_dict) cv2.imwrite( os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey() def __list_dir(self, dir_name): filename_list = list() for item in os.listdir(dir_name): if os.path.isdir(os.path.join(dir_name, item)): for filename in os.listdir(os.path.join(dir_name, item)): filename_list.append('{}/{}'.format(item, filename)) else: filename_list.append(item) return filename_list
class OpenPose(object): """ The class for Pose Estimation. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.train_loss_heatmap = AverageMeter() self.train_loss_associate = AverageMeter() self.val_losses = AverageMeter() self.val_loss_heatmap = AverageMeter() self.val_loss_associate = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_loss_manager = PoseLossManager(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.heatmap_generator = HeatmapGenerator(configer) self.paf_generator = PafGenerator(configer) self.data_transformer = DataTransformer(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = self.module_utilizer.load_net(self.pose_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( self._get_parameters()) self.train_loader = self.pose_data_loader.get_trainloader() self.val_loader = self.pose_data_loader.get_valloader() self.weights = self.configer.get('network', 'loss_weights') self.mse_loss = self.pose_loss_manager.get_pose_loss('mse_loss') def _get_parameters(self): lr_1 = [] lr_2 = [] lr_4 = [] lr_8 = [] params_dict = dict(self.pose_net.named_parameters()) for key, value in params_dict.items(): if ('model1_' not in key) and ('model0.' not in key) and ('backbone.' not in key): if key[-4:] == 'bias': lr_8.append(value) else: lr_4.append(value) elif key[-4:] == 'bias': lr_2.append(value) else: lr_1.append(value) params = [{ 'params': lr_1, 'lr': self.configer.get('lr', 'base_lr') }, { 'params': lr_2, 'lr': self.configer.get('lr', 'base_lr') * 2., 'weight_decay': 0.0 }, { 'params': lr_4, 'lr': self.configer.get('lr', 'base_lr') * 4. }, { 'params': lr_8, 'lr': self.configer.get('lr', 'base_lr') * 8., 'weight_decay': 0.0 }] return params def __train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.configer.plus_one('epoch') self.scheduler.step(self.configer.get('epoch')) # data_tuple: (inputs, heatmap, maskmap, vecmap) for i, data_dict in enumerate(self.train_loader): inputs = data_dict['img'] maskmap = data_dict['maskmap'] input_size = [inputs.size(3), inputs.size(2)] heatmap = self.heatmap_generator(data_dict['kpts'], input_size, maskmap=maskmap) vecmap = self.paf_generator(data_dict['kpts'], input_size, maskmap=maskmap) self.data_time.update(time.time() - start_time) # Change the data type. inputs, heatmap, maskmap, vecmap = self.module_utilizer.to_device( inputs, heatmap, maskmap, vecmap) # Forward pass. paf_out, heatmap_out = self.pose_net(inputs) # Compute the loss of the train batch & backward. loss_heatmap = self.mse_loss(heatmap_out, heatmap, mask=maskmap, weights=self.weights) loss_associate = self.mse_loss(paf_out, vecmap, mask=maskmap, weights=self.weights) loss = loss_heatmap + loss_associate self.train_losses.update(loss.item(), inputs.size(0)) self.train_loss_heatmap.update(loss_heatmap.item(), inputs.size(0)) self.train_loss_associate.update(loss_associate.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info('Loss Heatmap:{}, Loss Asso: {}'.format( self.train_loss_heatmap.avg, self.train_loss_associate.avg)) Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() self.train_loss_heatmap.reset() self.train_loss_associate.reset() # Check to val the current model. if self.val_loader is not None and \ self.configer.get('iters') % self.configer.get('solver', 'test_interval') == 0: self.__val() def __val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() with torch.no_grad(): for i, data_dict in enumerate(self.val_loader): inputs = data_dict['img'] maskmap = data_dict['maskmap'] input_size = [inputs.size(3), inputs.size(2)] heatmap = self.heatmap_generator(data_dict['kpts'], input_size, maskmap=maskmap) vecmap = self.paf_generator(data_dict['kpts'], input_size, maskmap=maskmap) # Change the data type. inputs, heatmap, maskmap, vecmap = self.module_utilizer.to_device( inputs, heatmap, maskmap, vecmap) # Forward pass. paf_out, heatmap_out = self.pose_net(inputs) # Compute the loss of the val batch. loss_heatmap = self.mse_loss(heatmap_out[-1], heatmap, maskmap) loss_associate = self.mse_loss(paf_out[-1], vecmap, maskmap) loss = loss_heatmap + loss_associate self.val_losses.update(loss.item(), inputs.size(0)) self.val_loss_heatmap.update(loss_heatmap.item(), inputs.size(0)) self.val_loss_associate.update(loss_associate.item(), inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.pose_net, save_mode='iters') Log.info('Loss Heatmap:{}, Loss Asso: {}'.format( self.val_loss_heatmap.avg, self.val_loss_associate.avg)) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.val_loss_heatmap.reset() self.val_loss_associate.reset() self.pose_net.train() def train(self): cudnn.benchmark = True if self.configer.get('network', 'resume') is not None and self.configer.get( 'network', 'resume_val'): self.__val() while self.configer.get('epoch') < self.configer.get( 'solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get( 'solver', 'max_epoch'): break
class OpenPose(object): """ The class for Pose Estimation. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.vis = PoseVisualizer(configer) self.loss_manager = PoseLossManager(configer) self.model_manager = PoseModelManager(configer) self.data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.lr = None self.iters = None def init_model(self): self.pose_net = self.model_manager.pose_detector() self.iters = 0 self.pose_net, _ = self.module_utilizer.load_net(self.pose_net) self.optimizer, self.lr = self.module_utilizer.update_optimizer( self.pose_net, self.iters) if self.configer.get('dataset') == 'coco': self.train_loader = self.data_loader.get_trainloader(OPCocoLoader) self.val_loader = self.data_loader.get_valloader(OPCocoLoader) else: Log.error('Dataset: {} is not valid!'.format( self.configer.get('dataset'))) exit(1) self.mse_loss = self.loss_manager.get_pose_loss('mse_loss') def __train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # data_tuple: (inputs, heatmap, maskmap, vecmap) for i, data_tuple in enumerate(self.train_loader): self.data_time.update(time.time() - start_time) # Change the data type. if len(data_tuple) < 2: Log.error('Train Loader Error!') exit(0) inputs = Variable(data_tuple[0].cuda(async=True)) heatmap = Variable(data_tuple[1].cuda(async=True)) maskmap = None if len(data_tuple) > 2: maskmap = Variable(data_tuple[2].cuda(async=True)) # Forward pass. paf_out, heatmap_out = self.pose_net(inputs) self.vis.vis_paf(paf_out, inputs.data.cpu().squeeze().numpy().transpose( 1, 2, 0), name='paf_out') # Compute the loss of the train batch & backward. loss_heatmap = self.mse_loss(heatmap_out, heatmap, maskmap) loss = loss_heatmap if len(data_tuple) > 3: vecmap = Variable(data_tuple[3].cuda(async=True)) self.vis.vis_paf(vecmap, inputs.data.cpu().squeeze().numpy().transpose( 1, 2, 0), name='paf') loss_associate = self.mse_loss(paf_out, vecmap, maskmap) loss += loss_associate self.train_losses.update(loss.data[0], inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.iters += 1 # Print the log info & reset the states. if self.iters % self.configer.get('solver', 'display_iter') == 0: Log.info( 'Train Iteration: {0}\t' 'Time {batch_time.sum:.3f}s / {1}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {1}iters, ({data_time.avg:3f})\n' 'Learning rate = {2}\n' 'Loss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'.format( self.iters, self.configer.get('solver', 'display_iter'), self.lr, batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ self.iters % self.configer.get('solver', 'test_interval') == 0: self.__val() # Adjust the learning rate after every iteration. self.optimizer, self.lr = self.module_utilizer.update_optimizer( self.pose_net, self.iters) def __val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() for j, data_tuple in enumerate(self.val_loader): # Change the data type. inputs = Variable(data_tuple[0].cuda(async=True), volatile=True) heatmap = Variable(data_tuple[1].cuda(async=True), volatile=True) maskmap = None if len(data_tuple) > 2: maskmap = Variable(data_tuple[2].cuda(async=True), volatile=True) # Forward pass. paf_out, heatmap_out = self.pose_net(inputs) # Compute the loss of the val batch. loss_heatmap = self.mse_loss(heatmap_out, heatmap, maskmap) loss = loss_heatmap if len(data_tuple) > 3: vecmap = Variable(data_tuple[3].cuda(async=True), volatile=True) loss_associate = self.mse_loss(paf_out, vecmap, maskmap) loss = loss_heatmap + loss_associate self.val_losses.update(loss.data[0], inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.pose_net, self.iters) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.pose_net.train() def train(self): cudnn.benchmark = True while self.iters < self.configer.get('solver', 'max_iter'): self.__train() if self.iters == self.configer.get('solver', 'max_iter'): break
class ConvPoseMachineTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.pose_vis = PoseVisualizer(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.heatmap_generator = HeatmapGenerator(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = self.module_utilizer.load_net(self.pose_net) self.pose_net.eval() def __test_img(self, image_path, save_path): Log.info('Image Path: {}'.format(image_path)) ori_image = ImageHelper.read_image(image_path, tool=self.configer.get('data', 'image_tool'), mode=self.configer.get('data', 'input_mode')) ori_width, ori_height = ImageHelper.get_size(ori_image) ori_img_bgr = ImageHelper.get_cv2_bgr(ori_image, mode=self.configer.get('data', 'input_mode')) heatmap_avg = np.zeros((ori_height, ori_width, self.configer.get('network', 'heatmap_out'))) for i, scale in enumerate(self.configer.get('test', 'scale_search')): image = self.blob_helper.make_input(ori_image, input_size=self.configer.get('test', 'input_size'), scale=scale) with torch.no_grad(): heatmap_out_list = self.pose_net(image) heatmap_out = heatmap_out_list[-1] # extract outputs, resize, and remove padding heatmap = heatmap_out.squeeze(0).cpu().numpy().transpose(1, 2, 0) heatmap = cv2.resize(heatmap, (ori_width, ori_height), interpolation=cv2.INTER_CUBIC) heatmap_avg = heatmap_avg + heatmap / len(self.configer.get('test', 'scale_search')) all_peaks = self.__extract_heatmap_info(heatmap_avg) image_canvas = self.__draw_key_point(all_peaks, ori_img_bgr) ImageHelper.save(image_canvas, save_path) def __extract_heatmap_info(self, heatmap_avg): all_peaks = [] for part in range(self.configer.get('network', 'heatmap_out') - 1): map_ori = heatmap_avg[:, :, part] map_gau = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map_gau.shape) map_left[1:, :] = map_gau[:-1, :] map_right = np.zeros(map_gau.shape) map_right[:-1, :] = map_gau[1:, :] map_up = np.zeros(map_gau.shape) map_up[:, 1:] = map_gau[:, :-1] map_down = np.zeros(map_gau.shape) map_down[:, :-1] = map_gau[:, 1:] peaks_binary = np.logical_and.reduce( (map_gau >= map_left, map_gau >= map_right, map_gau >= map_up, map_gau >= map_down, map_gau > self.configer.get('vis', 'part_threshold'))) peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse peaks = list(peaks) peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] all_peaks.append(peaks_with_score) return all_peaks def __draw_key_point(self, all_peaks, img_raw): img_canvas = img_raw.copy() # B,G,R order for i in range(self.configer.get('network', 'heatmap_out') - 1): for j in range(len(all_peaks[i])): cv2.circle(img_canvas, all_peaks[i][j][0:2], self.configer.get('vis', 'stick_width'), self.configer.get('details', 'color_list')[i], thickness=-1) return img_canvas def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/pose', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) for i, data_dict in enumerate(self.pose_data_loader.get_trainloader()): inputs = data_dict['img'] input_size = [inputs.size(3), inputs.size(2)] heatmap = self.heatmap_generator(data_dict['kpts'], input_size) for j in range(inputs.size(0)): image_bgr = self.blob_helper.tensor2bgr(inputs[j]) heatmap_avg = heatmap[j].numpy().transpose(1, 2, 0) heatmap_avg = cv2.resize(heatmap_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) all_peaks = self.__extract_heatmap_info(heatmap_avg) image_save = self.__draw_key_point(all_peaks, image_bgr) cv2.imwrite(os.path.join(base_dir, '{}_{}_result.jpg'.format(i, j)), image_save) def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/pose', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') if not os.path.exists(base_dir): os.makedirs(base_dir) filename = test_img.rstrip().split('/')[-1] save_path = os.path.join(base_dir, filename) self.__test_img(test_img, save_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) if not os.path.exists(base_dir): os.makedirs(base_dir) for filename in FileHelper.list_dir(test_dir): image_path = os.path.join(test_dir, filename) save_path = os.path.join(base_dir, filename) if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) self.__test_img(image_path, save_path)
class ConvPoseMachineTest(object): def __init__(self, configer): self.configer = configer self.pose_vis = PoseVisualizer(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None def init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = self.module_utilizer.load_net(self.pose_net) self.pose_net.eval() def __test_img(self, image_path, save_path): image_raw = ImageHelper.cv2_open_bgr(image_path) inputs = ImageHelper.bgr2rgb(image_raw) heatmap_avg = self.__get_heatmap(inputs) all_peaks = self.__extract_heatmap_info(heatmap_avg) image_save = self.__draw_key_point(all_peaks, image_raw) cv2.imwrite(save_path, image_save) def __get_heatmap(self, img_raw): multiplier = [ scale * self.configer.get('data', 'input_size')[0] / img_raw.shape[1] for scale in self.configer.get('data', 'scale_search') ] heatmap_avg = np.zeros((img_raw.shape[0], img_raw.shape[1], self.configer.get('network', 'heatmap_out'))) for i, scale in enumerate(multiplier): img_test = cv2.resize(img_raw, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) img_test_pad, pad = PadImage(self.configer.get( 'network', 'stride'))(img_test) img_test_pad = ToTensor()(img_test_pad) img_test_pad = Normalize( mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(img_test_pad) with torch.no_grad(): img_test_pad = img_test_pad.unsqueeze(0).to(self.device) heatmap_out_list = self.pose_net(img_test_pad) heatmap_out = heatmap_out_list[-1] # extract outputs, resize, and remove padding heatmap = heatmap_out.data.squeeze().cpu().numpy().transpose( 1, 2, 0) heatmap = cv2.resize(heatmap, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:img_test_pad.size(2) - pad[3], :img_test_pad.size(3) - pad[2], :] heatmap = cv2.resize(heatmap, (img_raw.shape[1], img_raw.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg = heatmap_avg + heatmap / len(multiplier) return heatmap_avg def __extract_heatmap_info(self, heatmap_avg): all_peaks = [] for part in range(self.configer.get('network', 'heatmap_out') - 1): map_ori = heatmap_avg[:, :, part] map_gau = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map_gau.shape) map_left[1:, :] = map_gau[:-1, :] map_right = np.zeros(map_gau.shape) map_right[:-1, :] = map_gau[1:, :] map_up = np.zeros(map_gau.shape) map_up[:, 1:] = map_gau[:, :-1] map_down = np.zeros(map_gau.shape) map_down[:, :-1] = map_gau[:, 1:] peaks_binary = np.logical_and.reduce( (map_gau >= map_left, map_gau >= map_right, map_gau >= map_up, map_gau >= map_down, map_gau > self.configer.get('vis', 'part_threshold'))) peaks = zip( np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse peaks = list(peaks) peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks] all_peaks.append(peaks_with_score) return all_peaks def __draw_key_point(self, all_peaks, img_raw): img_canvas = img_raw.copy() # B,G,R order for i in range(self.configer.get('network', 'heatmap_out') - 1): for j in range(len(all_peaks[i])): cv2.circle(img_canvas, all_peaks[i][j][0:2], self.configer.get('vis', 'stick_width'), self.configer.get('details', 'color_list')[i], thickness=-1) return img_canvas def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/pose', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) val_data_loader = self.pose_data_loader.get_valloader() for i, (inputs, heatmap) in enumerate(val_data_loader): for j in range(inputs.size(0)): ori_img = DeNormalize( mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(inputs[j]) image_raw = ori_img.numpy().transpose(1, 2, 0) image_raw = cv2.cvtColor(image_raw, cv2.COLOR_RGB2BGR) heatmap_avg = heatmap[j].numpy().transpose(1, 2, 0) heatmap_avg = cv2.resize( heatmap_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) all_peaks = self.__extract_heatmap_info(heatmap_avg) image_save = self.__draw_key_point(all_peaks, image_raw) cv2.imwrite( os.path.join(base_dir, '{}_{}_result.jpg'.format(i, j)), image_save) def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/pose', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') if not os.path.exists(base_dir): os.makedirs(base_dir) filename = test_img.rstrip().split('/')[-1] save_path = os.path.join(base_dir, filename) self.__test_img(test_img, save_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) if not os.path.exists(base_dir): os.makedirs(base_dir) for filename in FileHelper.list_dir(test_dir): image_path = os.path.join(test_dir, filename) save_path = os.path.join(base_dir, filename) if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) self.__test_img(image_path, save_path) def __create_coco_submission(self, test_dir=None, base_dir=None): pass def create_submission(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/pose', self.configer.get('dataset'), 'submission') if not os.path.exists(base_dir): os.makedirs(base_dir) test_dir = self.configer.get('test_dir') if self.configer.get('dataset') == 'coco': self.__create_coco_submission(test_dir) else: Log.error('Dataset: {} is not valid.'.format( self.configer.get('dataset'))) exit(1)
class OpenPoseTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.pose_visualizer = PoseVisualizer(configer) self.pose_parser = PoseParser(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.heatmap_generator = HeatmapGenerator(configer) self.paf_generator = PafGenerator(configer) self.data_transformer = DataTransformer(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = self.module_utilizer.load_net(self.pose_net) self.pose_net.eval() def __test_img(self, image_path, json_path, raw_path, vis_path): Log.info('Image Path: {}'.format(image_path)) ori_image = ImageHelper.read_image( image_path, tool=self.configer.get('data', 'image_tool'), mode=self.configer.get('data', 'input_mode')) ori_width, ori_height = ImageHelper.get_size(ori_image) ori_img_bgr = ImageHelper.get_cv2_bgr(ori_image, mode=self.configer.get( 'data', 'input_mode')) heatmap_avg = np.zeros( (ori_height, ori_width, self.configer.get('network', 'heatmap_out'))) paf_avg = np.zeros( (ori_height, ori_width, self.configer.get('network', 'paf_out'))) multiplier = [ scale * self.configer.get('test', 'input_size')[0] / ori_width for scale in self.configer.get('test', 'scale_search') ] stride = self.configer.get('network', 'stride') for i, scale in enumerate(multiplier): target_size = [ math.ceil((ori_width * scale) / stride) * stride, math.ceil((ori_height * scale) / stride) * stride ] image = self.blob_helper.make_input(ori_image, input_size=target_size, scale=1.0) with torch.no_grad(): paf_out_list, heatmap_out_list = self.pose_net(image) paf_out = paf_out_list[-1] heatmap_out = heatmap_out_list[-1] # extract outputs, resize, and remove padding heatmap = heatmap_out.squeeze(0).cpu().numpy().transpose( 1, 2, 0) heatmap = cv2.resize(heatmap, (ori_width, ori_height), interpolation=cv2.INTER_CUBIC) paf = paf_out.squeeze(0).cpu().numpy().transpose(1, 2, 0) paf = cv2.resize(paf, (ori_width, ori_height), interpolation=cv2.INTER_CUBIC) heatmap_avg = heatmap_avg + heatmap / len(multiplier) paf_avg = paf_avg + paf / len(multiplier) all_peaks = self.__extract_heatmap_info(heatmap_avg) special_k, connection_all = self.__extract_paf_info( ori_img_bgr, paf_avg, all_peaks) subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks) json_dict = self.__get_info_tree(ori_img_bgr, subset, candidate) image_canvas = self.pose_parser.draw_points(ori_img_bgr.copy(), json_dict) image_canvas = self.pose_parser.link_points(image_canvas, json_dict) ImageHelper.save(image_canvas, vis_path) ImageHelper.save(ori_img_bgr, raw_path) Log.info('Json Save Path: {}'.format(json_path)) JsonHelper.save_file(json_dict, json_path) def __get_info_tree(self, image_raw, subset, candidate): json_dict = dict() height, width, _ = image_raw.shape json_dict['image_height'] = height json_dict['image_width'] = width object_list = list() for n in range(len(subset)): if subset[n][-1] < self.configer.get('vis', 'num_threshold'): continue if subset[n][-2] / subset[n][-1] < self.configer.get( 'vis', 'avg_threshold'): continue object_dict = dict() object_dict['kpts'] = np.zeros( (self.configer.get('data', 'num_kpts'), 3)).tolist() for j in range(self.configer.get('data', 'num_kpts')): index = subset[n][j] if index == -1: object_dict['kpts'][j][0] = -1 object_dict['kpts'][j][1] = -1 object_dict['kpts'][j][2] = -1 else: object_dict['kpts'][j][0] = candidate[index.astype(int)][0] object_dict['kpts'][j][1] = candidate[index.astype(int)][1] object_dict['kpts'][j][2] = 1 object_dict['score'] = subset[n][-2] object_list.append(object_dict) json_dict['objects'] = object_list return json_dict def __extract_heatmap_info(self, heatmap_avg): all_peaks = [] peak_counter = 0 for part in range(self.configer.get('data', 'num_kpts')): map_ori = heatmap_avg[:, :, part] map_gau = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map_gau.shape) map_left[1:, :] = map_gau[:-1, :] map_right = np.zeros(map_gau.shape) map_right[:-1, :] = map_gau[1:, :] map_up = np.zeros(map_gau.shape) map_up[:, 1:] = map_gau[:, :-1] map_down = np.zeros(map_gau.shape) map_down[:, :-1] = map_gau[:, 1:] peaks_binary = np.logical_and.reduce( (map_gau >= map_left, map_gau >= map_right, map_gau >= map_up, map_gau >= map_down, map_gau > self.configer.get('vis', 'part_threshold'))) peaks = zip( np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse peaks = list(peaks) del_flag = [0 for i in range(len(peaks))] for i in range(len(peaks)): if del_flag[i] == 0: for j in range(i + 1, len(peaks)): if max(abs(peaks[i][0] - peaks[j][0]), abs(peaks[i][1] - peaks[j][1])) <= 6: del_flag[j] = 1 new_peaks = list() for i in range(len(peaks)): if del_flag[i] == 0: new_peaks.append(peaks[i]) peaks = new_peaks peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks] ids = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [ peaks_with_score[i] + (ids[i], ) for i in range(len(ids)) ] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) return all_peaks def __extract_paf_info(self, img_raw, paf_avg, all_peaks): connection_all = [] special_k = [] mid_num = self.configer.get('vis', 'mid_point_num') for k in range(len(self.configer.get('details', 'limb_seq'))): score_mid = paf_avg[:, :, [k * 2, k * 2 + 1]] candA = all_peaks[self.configer.get('details', 'limb_seq')[k][0] - 1] candB = all_peaks[self.configer.get('details', 'limb_seq')[k][1] - 1] nA = len(candA) nB = len(candB) if nA != 0 and nB != 0: connection_candidate = [] for i in range(nA): for j in range(nB): vec = np.subtract(candB[j][:2], candA[i][:2]) norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) + 1e-9 vec = np.divide(vec, norm) startend = zip( np.linspace(candA[i][0], candB[j][0], num=mid_num), np.linspace(candA[i][1], candB[j][1], num=mid_num)) startend = list(startend) vec_x = np.array([ score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] for I in range(len(startend)) ]) vec_y = np.array([ score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] for I in range(len(startend)) ]) score_midpts = np.multiply( vec_x, vec[0]) + np.multiply(vec_y, vec[1]) score_with_dist_prior = sum(score_midpts) / len( score_midpts) score_with_dist_prior += min( 0.5 * img_raw.shape[0] / norm - 1, 0) num_positive = len( np.nonzero(score_midpts > self.configer.get( 'vis', 'limb_threshold'))[0]) criterion1 = num_positive > int( self.configer.get('vis', 'limb_pos_ratio') * len(score_midpts)) criterion2 = score_with_dist_prior > 0 if criterion1 and criterion2: connection_candidate.append([ i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2] ]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) connection = np.zeros((0, 5)) for c in range(len(connection_candidate)): i, j, s = connection_candidate[c][0:3] if i not in connection[:, 3] and j not in connection[:, 4]: connection = np.vstack( [connection, [candA[i][3], candB[j][3], s, i, j]]) if len(connection) >= min(nA, nB): break connection_all.append(connection) else: special_k.append(k) connection_all.append([]) return special_k, connection_all def __get_subsets(self, connection_all, special_k, all_peaks): # last number in each row is the total parts number of that person # the second last number in each row is the score of the overall configuration subset = -1 * np.ones((0, self.configer.get('data', 'num_kpts') + 2)) candidate = np.array( [item for sublist in all_peaks for item in sublist]) for k in self.configer.get('details', 'mini_tree'): if k not in special_k: partAs = connection_all[k][:, 0] partBs = connection_all[k][:, 1] indexA, indexB = np.array( self.configer.get('details', 'limb_seq')[k]) - 1 for i in range(len(connection_all[k])): # = 1:size(temp,1) found = 0 subset_idx = [-1, -1] for j in range(len(subset)): # 1:size(subset,1): if subset[j][indexA] == partAs[i] or subset[j][ indexB] == partBs[i]: subset_idx[found] = j found += 1 if found == 1: j = subset_idx[0] if (subset[j][indexB] != partBs[i]): subset[j][indexB] = partBs[i] subset[j][-1] += 1 subset[j][-2] += candidate[ partBs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them j1, j2 = subset_idx membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] if len(np.nonzero(membership == 2)[0]) == 0: # merge subset[j1][:-2] += (subset[j2][:-2] + 1) subset[j1][-2:] += subset[j2][-2:] subset[j1][-2] += connection_all[k][i][2] subset = np.delete(subset, j2, 0) else: # as like found == 1 subset[j1][indexB] = partBs[i] subset[j1][-1] += 1 subset[j1][-2] += candidate[ partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset elif not found: row = -1 * np.ones( self.configer.get('data', 'num_kpts') + 2) row[indexA] = partAs[i] row[indexB] = partBs[i] row[-1] = 2 row[-2] = sum( candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] subset = np.vstack([subset, row]) return subset, candidate def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/pose', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') filename = test_img.rstrip().split('/')[-1] json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(json_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(test_img, json_path, raw_path, vis_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) FileHelper.make_dirs(base_dir) img_count = 0 for filename in FileHelper.list_dir(test_dir): img_count += 1 if img_count > 1200: break image_path = os.path.join(test_dir, filename) json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(json_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(image_path, json_path, raw_path, vis_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/pose', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) count = 0 for i, data_dict in enumerate(self.pose_data_loader.get_trainloader()): inputs = data_dict['img'] maskmap = data_dict['maskmap'] input_size = [inputs.size(3), inputs.size(2)] heatmap = self.heatmap_generator(data_dict['kpts'], input_size, maskmap=maskmap) vecmap = self.paf_generator(data_dict['kpts'], input_size, maskmap=maskmap) for j in range(inputs.size(0)): count = count + 1 if count > 10: exit(1) Log.info(heatmap.size()) image_bgr = self.blob_helper.tensor2bgr(inputs[j]) mask_canvas = maskmap[j].repeat(3, 1, 1).numpy().transpose(1, 2, 0) mask_canvas = (mask_canvas * 255).astype(np.uint8) mask_canvas = cv2.resize( mask_canvas, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) image_bgr = cv2.addWeighted(image_bgr, 0.6, mask_canvas, 0.4, 0) heatmap_avg = heatmap[j].numpy().transpose(1, 2, 0) heatmap_avg = cv2.resize( heatmap_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) paf_avg = vecmap[j].numpy().transpose(1, 2, 0) paf_avg = cv2.resize(paf_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) self.pose_visualizer.vis_peaks(heatmap_avg, image_bgr) self.pose_visualizer.vis_paf(paf_avg, image_bgr) all_peaks = self.__extract_heatmap_info(heatmap_avg) special_k, connection_all = self.__extract_paf_info( image_bgr, paf_avg, all_peaks) subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks) json_dict = self.__get_info_tree(image_bgr, subset, candidate) image_canvas = self.pose_parser.draw_points( image_bgr, json_dict) image_canvas = self.pose_parser.link_points( image_canvas, json_dict) cv2.imwrite( os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey()
class OpenPose(object): """ The class for Pose Estimation. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.vis = PoseVisualizer(configer) self.loss_manager = PoseLossManager(configer) self.model_manager = PoseModelManager(configer) self.data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.lr = None self.iters = None def init_model(self): self.pose_net = self.model_manager.pose_detector() self.iters = 0 self.pose_net, _ = self.module_utilizer.load_net(self.pose_net) self.optimizer, self.lr = self.module_utilizer.update_optimizer(self.pose_net, self.iters) if self.configer.get('dataset') == 'coco': self.train_loader = self.data_loader.get_trainloader(OPCocoLoader) self.val_loader = self.data_loader.get_valloader(OPCocoLoader) else: Log.error('Dataset: {} is not valid!'.format(self.configer.get('dataset'))) exit(1) self.mse_loss = self.loss_manager.get_pose_loss('mse_loss') def __train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # data_tuple: (inputs, heatmap, maskmap, vecmap) for i, data_tuple in enumerate(self.train_loader): self.data_time.update(time.time() - start_time) # Change the data type. if len(data_tuple) < 2: Log.error('Train Loader Error!') exit(0) inputs = Variable(data_tuple[0].cuda(async=True)) heatmap = Variable(data_tuple[1].cuda(async=True)) maskmap = None if len(data_tuple) > 2: maskmap = Variable(data_tuple[2].cuda(async=True)) # Forward pass. paf_out, heatmap_out = self.pose_net(inputs) self.vis.vis_paf(paf_out, inputs.data.cpu().squeeze().numpy().transpose(1, 2, 0), name='paf_out') # Compute the loss of the train batch & backward. loss_heatmap = self.mse_loss(heatmap_out, heatmap, maskmap) loss = loss_heatmap if len(data_tuple) > 3: vecmap = Variable(data_tuple[3].cuda(async=True)) self.vis.vis_paf(vecmap, inputs.data.cpu().squeeze().numpy().transpose(1, 2, 0), name='paf') loss_associate = self.mse_loss(paf_out, vecmap, maskmap) loss += loss_associate self.train_losses.update(loss.data[0], inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.iters += 1 # Print the log info & reset the states. if self.iters % self.configer.get('solver', 'display_iter') == 0: Log.info('Train Iteration: {0}\t' 'Time {batch_time.sum:.3f}s / {1}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {1}iters, ({data_time.avg:3f})\n' 'Learning rate = {2}\n' 'Loss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'.format( self.iters, self.configer.get('solver', 'display_iter'), self.lr, batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ self.iters % self.configer.get('solver', 'test_interval') == 0: self.__val() # Adjust the learning rate after every iteration. self.optimizer, self.lr = self.module_utilizer.update_optimizer(self.pose_net, self.iters) def __val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() for j, data_tuple in enumerate(self.val_loader): # Change the data type. inputs = Variable(data_tuple[0].cuda(async=True), volatile=True) heatmap = Variable(data_tuple[1].cuda(async=True), volatile=True) maskmap = None if len(data_tuple) > 2: maskmap = Variable(data_tuple[2].cuda(async=True), volatile=True) # Forward pass. paf_out, heatmap_out = self.pose_net(inputs) # Compute the loss of the val batch. loss_heatmap = self.mse_loss(heatmap_out, heatmap, maskmap) loss = loss_heatmap if len(data_tuple) > 3: vecmap = Variable(data_tuple[3].cuda(async=True), volatile=True) loss_associate = self.mse_loss(paf_out, vecmap, maskmap) loss = loss_heatmap + loss_associate self.val_losses.update(loss.data[0], inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.pose_net, self.iters) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format( batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.pose_net.train() def train(self): cudnn.benchmark = True while self.iters < self.configer.get('solver', 'max_iter'): self.__train() if self.iters == self.configer.get('solver', 'max_iter'): break