def main(): global args, best_error, n_iter args = parser.parse_args() normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) train_transform = custom_transforms.Compose([ custom_transforms.RandomRotate(), custom_transforms.RandomHorizontalFlip(), custom_transforms.RandomScaleCrop(), custom_transforms.ArrayToTensor(), normalize ]) train_set = SequenceFolder(args.data, transform=train_transform, seed=args.seed, train=True, sequence_length=args.sequence_length) train_loader = torch.utils.data.DataLoader(train_set, batch_size=4, shuffle=True, num_workers=4, pin_memory=True, drop_last=True) print(len(train_loader))
def main(): global global_vars_dict args = global_vars_dict['args'] normalize = custom_transforms.NormalizeLocally() valid_transform = custom_transforms.Compose([custom_transforms.ArrayToTensor(), normalize]) timestamp = datetime.datetime.now().strftime("%m-%d-%H:%M") args.save_path = Path('test_out')/ Path(args.sq_name) print('=> will save everything to {}'.format(args.save_path)) args.save_path.makedirs_p() tb_writer = SummaryWriter(args.save_path) val_set = SequenceFolder( # 只有图 args.data, transform=valid_transform, seed=None, train=False, sequence_length=args.sequence_length, target_transform=None ) val_loader = torch.utils.data.DataLoader( val_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=True) print("=> creating model") # 1.1 disp_net disp_net = getattr(models, args.dispnet)().cuda() weights = torch.load(args.pretrained_disp) disp_net.load_state_dict(weights['state_dict']) # 1.2 pose_net pose_net = getattr(models, args.posenet)(nb_ref_imgs=args.sequence_length - 1).cuda() weights = torch.load(args.pretrained_pose) pose_net.load_state_dict(weights['state_dict']) # 1.3.flow_net flow_net = getattr(models, args.flownet)(nlevels=args.nlevels).cuda() weights = torch.load(args.pretrained_flow) flow_net.load_state_dict(weights['state_dict']) # 1.4 mask_net mask_net = getattr(models, args.masknet)(nb_ref_imgs=args.sequence_length - 1, output_exp=True).cuda() weights = torch.load(args.pretrained_mask) mask_net.load_state_dict(weights['state_dict']) disp_list,disp_arr,flow_list,mask_list= test(val_loader,disp_net,mask_net,pose_net, flow_net, tb_writer,global_vars_dict = global_vars_dict) print('over')
def main(): global args, best_error, n_iter args = parser.parse_args() save_path = Path(args.name) args.save_path = 'checkpoints' / save_path #/timestamp print('=> will save everything to {}'.format(args.save_path)) args.save_path.makedirs_p() torch.manual_seed(args.seed) training_writer = SummaryWriter(args.save_path) output_writer = SummaryWriter(args.save_path / 'valid') # Data loading code flow_loader_h, flow_loader_w = 384, 1280 train_transform = custom_transforms.Compose([ custom_transforms.RandomHorizontalFlip(), custom_transforms.RandomScaleCrop(h=256, w=256), custom_transforms.ArrayToTensor(), ]) valid_transform = custom_transforms.Compose([ custom_transforms.Scale(h=flow_loader_h, w=flow_loader_w), custom_transforms.ArrayToTensor() ]) print("=> fetching scenes in '{}'".format(args.data)) train_set = SequenceFolder(args.data, transform=train_transform, seed=args.seed, train=True, sequence_length=3) if args.valset == "kitti2015": from datasets.validation_flow import ValidationFlowKitti2015 val_set = ValidationFlowKitti2015(root=args.kitti_data, transform=valid_transform) elif args.valset == "kitti2012": from datasets.validation_flow import ValidationFlowKitti2012 val_set = ValidationFlowKitti2012(root=args.kitti_data, transform=valid_transform) if args.DEBUG: train_set.__len__ = 32 train_set.samples = train_set.samples[:32] print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes))) print('{} samples found in valid scenes'.format(len(val_set))) train_loader = torch.utils.data.DataLoader(train_set, batch_size=1, shuffle=True, num_workers=args.workers, pin_memory=True, drop_last=True) val_loader = torch.utils.data.DataLoader( val_set, batch_size= 1, # batch size is 1 since images in kitti have different sizes shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=True) if args.epoch_size == 0: args.epoch_size = len(train_loader) # create model print("=> creating model") if args.flownet == 'SpyNet': flow_net = getattr(models, args.flownet)(nlevels=6, pretrained=True) elif args.flownet == 'Back2Future': flow_net = getattr( models, args.flownet)(pretrained='pretrained/b2f_rm_hard.pth.tar') elif args.flownet == 'PWCNet': flow_net = models.pwc_dc_net( 'pretrained/pwc_net_chairs.pth.tar') # pwc_net.pth.tar') else: flow_net = getattr(models, args.flownet)() if args.flownet in ['SpyNet', 'Back2Future', 'PWCNet']: print("=> using pre-trained weights for " + args.flownet) elif args.flownet in ['FlowNetC']: print("=> using pre-trained weights for FlowNetC") weights = torch.load('pretrained/FlowNet2-C_checkpoint.pth.tar') flow_net.load_state_dict(weights['state_dict']) elif args.flownet in ['FlowNetS']: print("=> using pre-trained weights for FlowNetS") weights = torch.load('pretrained/flownets.pth.tar') flow_net.load_state_dict(weights['state_dict']) elif args.flownet in ['FlowNet2']: print("=> using pre-trained weights for FlowNet2") weights = torch.load('pretrained/FlowNet2_checkpoint.pth.tar') flow_net.load_state_dict(weights['state_dict']) else: flow_net.init_weights() pytorch_total_params = sum(p.numel() for p in flow_net.parameters()) print("Number of model paramters: " + str(pytorch_total_params)) flow_net = flow_net.cuda() cudnn.benchmark = True if args.patch_type == 'circle': patch, mask, patch_shape = init_patch_circle(args.image_size, args.patch_size) patch_init = patch.copy() elif args.patch_type == 'square': patch, patch_shape = init_patch_square(args.image_size, args.patch_size) patch_init = patch.copy() mask = np.ones(patch_shape) else: sys.exit("Please choose a square or circle patch") if args.patch_path: patch, mask, patch_shape = init_patch_from_image( args.patch_path, args.mask_path, args.image_size, args.patch_size) patch_init = patch.copy() if args.log_terminal: logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader), attack_size=args.max_count) logger.epoch_bar.start() else: logger = None for epoch in range(args.epochs): if args.log_terminal: logger.epoch_bar.update(epoch) logger.reset_train_bar() # train for one epoch patch, mask, patch_init, patch_shape = train(patch, mask, patch_init, patch_shape, train_loader, flow_net, epoch, logger, training_writer) # Validate errors, error_names = validate_flow_with_gt(patch, mask, patch_shape, val_loader, flow_net, epoch, logger, output_writer) error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names, errors)) # if args.log_terminal: logger.valid_writer.write(' * Avg {}'.format(error_string)) else: print('Epoch {} completed'.format(epoch)) for error, name in zip(errors, error_names): training_writer.add_scalar(name, error, epoch) torch.save(patch, args.save_path / 'patch_epoch_{}'.format(str(epoch))) if args.log_terminal: logger.epoch_bar.finish()
def main(): global args, best_error, n_iter, device args = parser.parse_args() save_path = save_path_formatter(args, parser) args.save_path = 'checkpoints_shifted' / save_path print('=> will save everything to {}'.format(args.save_path)) args.save_path.makedirs_p() torch.manual_seed(args.seed) training_writer = SummaryWriter(args.save_path) output_writers = [] if args.log_output: for i in range(3): output_writers.append( SummaryWriter(args.save_path / 'valid' / str(i))) # Data loading code normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) train_transform = custom_transforms.Compose([ custom_transforms.RandomHorizontalFlip(), custom_transforms.RandomScaleCrop(), custom_transforms.ArrayToTensor(), normalize ]) valid_transform = custom_transforms.Compose( [custom_transforms.ArrayToTensor(), normalize]) print("=> fetching scenes in '{}'".format(args.data)) train_set = ShiftedSequenceFolder( args.data, transform=train_transform, seed=args.seed, train=True, sequence_length=args.sequence_length, target_displacement=args.target_displacement) # if no Groundtruth is avalaible, Validation set is the same type as training set to measure photometric loss from warping if args.with_gt: from datasets.validation_folders import ValidationSet val_set = ValidationSet(args.data, transform=valid_transform) else: val_set = SequenceFolder( args.data, transform=valid_transform, seed=args.seed, train=False, sequence_length=args.sequence_length, ) print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes))) print('{} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes))) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) adjust_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True ) # workers is set to 0 to avoid multiple instances to be modified at the same time val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.epoch_size == 0: args.epoch_size = len(train_loader) train.args = args # create model print("=> creating model") disp_net = models.DispNetS().cuda() output_exp = args.mask_loss_weight > 0 if not output_exp: print("=> no mask loss, PoseExpnet will only output pose") pose_exp_net = models.PoseExpNet( nb_ref_imgs=args.sequence_length - 1, output_exp=args.mask_loss_weight > 0).to(device) if args.pretrained_exp_pose: print("=> using pre-trained weights for explainabilty and pose net") weights = torch.load(args.pretrained_exp_pose) pose_exp_net.load_state_dict(weights['state_dict'], strict=False) else: pose_exp_net.init_weights() if args.pretrained_disp: print("=> using pre-trained weights for Dispnet") weights = torch.load(args.pretrained_disp) disp_net.load_state_dict(weights['state_dict']) else: disp_net.init_weights() cudnn.benchmark = True disp_net = torch.nn.DataParallel(disp_net) pose_exp_net = torch.nn.DataParallel(pose_exp_net) print('=> setting adam solver') parameters = chain(disp_net.parameters(), pose_exp_net.parameters()) optimizer = torch.optim.Adam(parameters, args.lr, betas=(args.momentum, args.beta), weight_decay=args.weight_decay) with open(args.save_path / args.log_summary, 'w') as csvfile: writer = csv.writer(csvfile, delimiter='\t') writer.writerow(['train_loss', 'validation_loss']) with open(args.save_path / args.log_full, 'w') as csvfile: writer = csv.writer(csvfile, delimiter='\t') writer.writerow( ['train_loss', 'photo_loss', 'explainability_loss', 'smooth_loss']) logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader)) logger.epoch_bar.start() for epoch in range(args.epochs): logger.epoch_bar.update(epoch) # train for one epoch logger.reset_train_bar() train_loss = train(args, train_loader, disp_net, pose_exp_net, optimizer, args.epoch_size, logger, training_writer) logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss)) if (epoch + 1) % 5 == 0: train_set.adjust = True logger.reset_train_bar(len(adjust_loader)) average_shifts = adjust_shifts(args, train_set, adjust_loader, pose_exp_net, epoch, logger, training_writer) shifts_string = ' '.join( ['{:.3f}'.format(s) for s in average_shifts]) logger.train_writer.write( ' * adjusted shifts, average shifts are now : {}'.format( shifts_string)) for i, shift in enumerate(average_shifts): training_writer.add_scalar('shifts{}'.format(i), shift, epoch) train_set.adjust = False # evaluate on validation set logger.reset_valid_bar() if args.with_gt: errors, error_names = validate_with_gt(args, val_loader, disp_net, epoch, logger, output_writers) else: errors, error_names = validate_without_gt(args, val_loader, disp_net, pose_exp_net, epoch, logger, output_writers) error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names, errors)) logger.valid_writer.write(' * Avg {}'.format(error_string)) for error, name in zip(errors, error_names): training_writer.add_scalar(name, error, epoch) # Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3) decisive_error = errors[0] if best_error < 0: best_error = decisive_error # remember lowest error and save checkpoint is_best = decisive_error < best_error best_error = min(best_error, decisive_error) save_checkpoint(args.save_path, { 'epoch': epoch + 1, 'state_dict': disp_net.module.state_dict() }, { 'epoch': epoch + 1, 'state_dict': pose_exp_net.module.state_dict() }, is_best) with open(args.save_path / args.log_summary, 'a') as csvfile: writer = csv.writer(csvfile, delimiter='\t') writer.writerow([train_loss, decisive_error]) logger.epoch_bar.finish()
def main(): global best_error, n_iter, device args = parser.parse_args() timestamp = datetime.datetime.now().strftime("%m-%d-%H:%M") save_path = Path(args.name) args.save_path = 'checkpoints' / save_path / timestamp print('=> will save everything to {}'.format(args.save_path)) args.save_path.makedirs_p() torch.manual_seed(args.seed) np.random.seed(args.seed) cudnn.deterministic = True cudnn.benchmark = True training_writer = SummaryWriter(args.save_path) output_writers = [] if args.log_output: for i in range(3): output_writers.append( SummaryWriter(args.save_path / 'valid' / str(i))) # Data loading code normalize = custom_transforms.Normalize(mean=[0.45, 0.45, 0.45], std=[0.225, 0.225, 0.225]) train_transform = custom_transforms.Compose([ custom_transforms.RandomHorizontalFlip(), custom_transforms.RandomScaleCrop(), custom_transforms.ArrayToTensor(), normalize ]) valid_transform = custom_transforms.Compose( [custom_transforms.ArrayToTensor(), normalize]) print("=> fetching scenes in '{}'".format(args.data)) train_set = SequenceFolder(args.data, transform=train_transform, seed=args.seed, train=True, sequence_length=args.sequence_length) # if no Groundtruth is avalaible, Validation set is the same type as training set to measure photometric loss from warping if args.with_gt: from datasets.validation_folders import ValidationSet val_set = ValidationSet(args.data, transform=valid_transform) else: val_set = SequenceFolder(args.data, transform=valid_transform, seed=args.seed, train=False, sequence_length=args.sequence_length) print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes))) print('{} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes))) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.epoch_size == 0: args.epoch_size = len(train_loader) # create model print("=> creating model") disp_net = models.DispResNet(args.resnet_layers, args.with_pretrain).to(device) pose_net = models.PoseResNet(18, args.with_pretrain).to(device) # load parameters if args.pretrained_disp: print("=> using pre-trained weights for DispResNet") weights = torch.load(args.pretrained_disp) disp_net.load_state_dict(weights['state_dict'], strict=False) if args.pretrained_pose: print("=> using pre-trained weights for PoseResNet") weights = torch.load(args.pretrained_pose) pose_net.load_state_dict(weights['state_dict'], strict=False) disp_net = torch.nn.DataParallel(disp_net) pose_net = torch.nn.DataParallel(pose_net) print('=> setting adam solver') optim_params = [{ 'params': disp_net.parameters(), 'lr': args.lr }, { 'params': pose_net.parameters(), 'lr': args.lr }] optimizer = torch.optim.Adam(optim_params, betas=(args.momentum, args.beta), weight_decay=args.weight_decay) with open(args.save_path / args.log_summary, 'w') as csvfile: writer = csv.writer(csvfile, delimiter='\t') writer.writerow(['train_loss', 'validation_loss']) with open(args.save_path / args.log_full, 'w') as csvfile: writer = csv.writer(csvfile, delimiter='\t') writer.writerow([ 'train_loss', 'photo_loss', 'smooth_loss', 'geometry_consistency_loss' ]) logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader)) logger.epoch_bar.start() for epoch in range(args.epochs): logger.epoch_bar.update(epoch) # train for one epoch logger.reset_train_bar() train_loss = train(args, train_loader, disp_net, pose_net, optimizer, args.epoch_size, logger, training_writer) logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss)) # evaluate on validation set logger.reset_valid_bar() if args.with_gt: errors, error_names = validate_with_gt(args, val_loader, disp_net, epoch, logger, output_writers) else: errors, error_names = validate_without_gt(args, val_loader, disp_net, pose_net, epoch, logger, output_writers) error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names, errors)) logger.valid_writer.write(' * Avg {}'.format(error_string)) for error, name in zip(errors, error_names): training_writer.add_scalar(name, error, epoch) # Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3) decisive_error = errors[1] if best_error < 0: best_error = decisive_error # remember lowest error and save checkpoint is_best = decisive_error < best_error best_error = min(best_error, decisive_error) save_checkpoint(args.save_path, { 'epoch': epoch + 1, 'state_dict': disp_net.module.state_dict() }, { 'epoch': epoch + 1, 'state_dict': pose_net.module.state_dict() }, is_best) with open(args.save_path / args.log_summary, 'a') as csvfile: writer = csv.writer(csvfile, delimiter='\t') writer.writerow([train_loss, decisive_error]) logger.epoch_bar.finish()