Пример #1
0
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose(
            [
                transforms.Resize(
                    250.0 / iheight
                ),  # this is for computational efficiency, since rotation can be slow
                transforms.Rotate(angle),
                transforms.Resize(s),
                transforms.CenterCrop((228, 304)),
                transforms.HorizontalFlip(do_flip),
                transforms.Resize(self.output_size),
            ]
        )
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype="float") / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Пример #2
0
 def get(cls, args):
     normalize = arraytransforms.Normalize(mean=[0.502], std=[1.0])
     train_dataset = cls(args.data,
                         'train',
                         args.train_file,
                         args.cache,
                         transform=transforms.Compose([
                             arraytransforms.RandomResizedCrop(224),
                             arraytransforms.ToTensor(),
                             normalize,
                             transforms.Lambda(torch.cat),
                         ]))
     val_transforms = transforms.Compose([
         arraytransforms.Resize(256),
         arraytransforms.CenterCrop(224),
         arraytransforms.ToTensor(),
         normalize,
         transforms.Lambda(torch.cat),
     ])
     val_dataset = cls(args.data,
                       'val',
                       args.val_file,
                       args.cache,
                       transform=val_transforms)
     valvideo_dataset = cls(args.data,
                            'val_video',
                            args.val_file,
                            args.cache,
                            transform=val_transforms)
     return train_dataset, val_dataset, valvideo_dataset
Пример #3
0
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose(
            [
                transforms.Resize(250.0 / iheight),
                transforms.CenterCrop((228, 304)),
                transforms.Resize(self.output_size),
            ]
        )
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype="float") / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
#else:
train_sampler = None

train_loader = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=args.batch_size,
                                           shuffle=False,
                                           num_workers=args.workers,
                                           pin_memory=True,
                                           sampler=train_sampler)

test_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
    args.data,
    transforms.Compose([
        transforms.ToTensor(),
        normalize,
        transforms.CenterCrop(input_size),
    ]),
    Train=False),
                                          batch_size=args.batch_size,
                                          shuffle=False,
                                          num_workers=args.workers,
                                          pin_memory=True)

num_classes = 1000

# Select Device
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else 'cpu')
if use_cuda:
    print("Using CUDA!")
    print("Using %d GPUs" % torch.cuda.device_count())
Пример #5
0
def main():
    global args, best_prec1
    args = parser.parse_args()

    args.distributed = args.world_size > 1

    if args.distributed:
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size)

    # create model
    if args.arch=='alexnet':
        model = model_list.alexnet(pretrained=args.pretrained)
        input_size = 227
    else:
        raise Exception('Model not supported yet')

    if not args.distributed:
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()
    else:
        model.cuda()
        model = torch.nn.parallel.DistributedDataParallel(model)

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code
    if not os.path.exists(args.data+'/imagenet_mean.binaryproto'):
        print("==> Data directory"+args.data+"does not exits")
        print("==> Please specify the correct data path by")
        print("==>     --data <DATA_PATH>")
        return

    normalize = transforms.Normalize(
            meanfile=args.data+'/imagenet_mean.binaryproto')

    train_dataset = datasets.ImageFolder(
        args.data,
        transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
            transforms.RandomSizedCrop(input_size),
        ]),
        Train=True)

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(
        datasets.ImageFolder(args.data, transforms.Compose([
            transforms.ToTensor(),
            normalize,
            transforms.CenterCrop(input_size),
        ]),
        Train=False),
        batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True)

    print model

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint({
            'epoch': epoch + 1,
            'arch': args.arch,
            'state_dict': model.state_dict(),
            'best_prec1': best_prec1,
            'optimizer' : optimizer.state_dict(),
        }, is_best)
Пример #6
0
def main():
    global args, best_prec1
    args = parser.parse_args()

    # create model
    if args.arch == 'alexnet':
        model = model_list.alexnet(pretrained=args.pretrained)
        input_size = 227
    else:
        raise Exception('Model not supported yet')

    if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
        model.features = torch.nn.DataParallel(model.features)
        model.cuda()
    else:
        model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.Adam(model.parameters(),
                                 args.lr,
                                 weight_decay=args.weight_decay)

    for m in model.modules():
        if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
            c = float(m.weight.data[0].nelement())
            m.weight.data = m.weight.data.normal_(0, 1.0 / c)
        elif isinstance(m, nn.BatchNorm2d):
            m.weight.data = m.weight.data.zero_().add(1.0)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
            del checkpoint
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code

    if args.caffe_data:
        print('==> Using Caffe Dataset')
        cwd = os.getcwd()
        sys.path.append(cwd + '/../')
        import datasets as datasets
        import datasets.transforms as transforms
        if not os.path.exists(args.data + '/imagenet_mean.binaryproto'):
            print("==> Data directory" + args.data + "does not exits")
            print("==> Please specify the correct data path by")
            print("==>     --data <DATA_PATH>")
            return

        normalize = transforms.Normalize(meanfile=args.data +
                                         '/imagenet_mean.binaryproto')

        train_dataset = datasets.ImageFolder(
            args.data,
            transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
                transforms.RandomSizedCrop(input_size),
            ]),
            Train=True)

        train_sampler = None

        train_loader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_size=args.batch_size,
                                                   shuffle=False,
                                                   num_workers=args.workers,
                                                   pin_memory=True,
                                                   sampler=train_sampler)

        val_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
            args.data,
            transforms.Compose([
                transforms.ToTensor(),
                normalize,
                transforms.CenterCrop(input_size),
            ]),
            Train=False),
                                                 batch_size=args.batch_size,
                                                 shuffle=False,
                                                 num_workers=args.workers,
                                                 pin_memory=True)
    else:
        print('==> Using Pytorch Dataset')
        import torchvision
        import torchvision.transforms as transforms
        import torchvision.datasets as datasets
        traindir = os.path.join(args.data, 'train')
        valdir = os.path.join(args.data, 'val')
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])

        torchvision.set_image_backend('accimage')

        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(input_size, scale=(0.40, 1.0)),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))

        train_loader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_size=args.batch_size,
                                                   shuffle=True,
                                                   num_workers=args.workers,
                                                   pin_memory=True)
        val_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(input_size),
                transforms.ToTensor(),
                normalize,
            ])),
                                                 batch_size=args.batch_size,
                                                 shuffle=False,
                                                 num_workers=args.workers,
                                                 pin_memory=True)

    print model

    # define the binarization operator
    global bin_op
    bin_op = util.BinOp(model)

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_prec1': best_prec1,
                'optimizer': optimizer.state_dict(),
            }, is_best)