def __init__(self, root, N, noise_level=1e-2, train=True, low_light=False, transform=None, target_transform=None, download=False): # transform = BlockGaussian(N) transform = th_transforms.Compose([ torchvision.transforms.Resize(size=32), th_transforms.ToTensor(), ScaleZeroMean(), AddGaussianNoiseSetN2N(N, (0, 50.)) ]) th_trans = th_transforms.Compose( [torchvision.transforms.Resize(size=32), th_transforms.ToTensor()]) self.__class__.__name__ = "mnist" super(DisentMNISTv1, self).__init__(root, train=train, transform=transform, target_transform=target_transform, download=download) self.th_trans = th_trans
def _get_g_noise(self, params): """ Noise Type: Gaussian (LL) - Each N images has Gaussian noise from with same parameters """ to_tensor = th_transforms.ToTensor() szm = ScaleZeroMean() gaussian_noise = AddGaussianNoise(params['mean'], params['stddev']) comp = [to_tensor, szm, gaussian_noise] t = th_transforms.Compose(comp) return t
def _get_msg_noise(self, params, N): """ Noise Type: Multi-scale Gaussian (MSG) - Each N images has it's own noise level """ resize = torchvision.transforms.Resize(size=32) to_tensor = th_transforms.ToTensor() szm = ScaleZeroMean() gaussian_n2n = AddGaussianNoiseSetN2N(N, (0, 50.)) comp = [resize, to_tensor, szm, gaussian_n2n] t = th_transforms.Compose(comp) return t
def _get_g_noise(self,params,N): """ Noise Type: Gaussian (LL) - Each N images has Gaussian noise from with same parameters """ resize = torchvision.transforms.Resize(size=32) to_tensor = th_transforms.ToTensor() szm = ScaleZeroMean() gaussian_noise = AddGaussianNoiseSet(N,params['mean'],params['stddev']) comp = [resize,to_tensor,szm,gaussian_noise] t = th_transforms.Compose(comp) return t
def __init__(self, root: str, N: int, noise_level: float, random_crop: bool, split: str = 'train', transform=None, target_transform=None): root = Path(root) / Path("imagenet/") if random_crop: transform = th_transforms.Compose([ torchvision.transforms.Resize(size=256), torchvision.transforms.RandomCrop(size=256), th_transforms.ToTensor(), ScaleZeroMean(), AddGaussianNoiseSetN2N(N, (0, 50.)) ]) else: transform = th_transforms.Compose([ torchvision.transforms.Resize(size=256), th_transforms.ToTensor(), ScaleZeroMean(), AddGaussianNoiseSetN2N(N, (0, 50.)) ]) th_trans = th_transforms.Compose([ torchvision.transforms.Resize(size=256), th_transforms.ToTensor(), ScaleZeroMean(), ]) super(DisentImageNetv1, self).__init__(root, split, None, transform=transform, target_transform=target_transform) self.th_trans = th_trans
def train_loop_offset(cfg,model,optimizer,criterion,train_loader,epoch): model.train() model = model.to(cfg.device) N = cfg.N total_loss = 0 running_loss = 0 szm = ScaleZeroMean() # random_eraser = th_trans.RandomErasing(scale=(0.40,0.80)) random_eraser = th_trans.RandomErasing(scale=(0.02,0.33)) # if cfg.N != 5: return # for batch_idx, (burst_imgs, raw_img) in enumerate(train_loader): for batch_idx, (burst_imgs, res_imgs, raw_img) in enumerate(train_loader): optimizer.zero_grad() model.zero_grad() # fig,ax = plt.subplots(figsize=(10,10)) # imgs = burst_imgs + 0.5 # imgs.clamp_(0.,1.) # raw_img = raw_img.expand(burst_imgs.shape) # print(imgs.shape,raw_img.shape) # all_img = torch.cat([imgs,raw_img],dim=1) # print(all_img.shape) # grids = [vutils.make_grid(all_img[i],nrow=16) for i in range(cfg.dynamic.frames)] # ims = [[ax.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in grids] # ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True) # Writer = animation.writers['ffmpeg'] # writer = Writer(fps=1, metadata=dict(artist='Me'), bitrate=1800) # ani.save(f"{settings.ROOT_PATH}/train_loop_voc.mp4", writer=writer) # print("I DID IT!") # return # -- reshaping of data -- # raw_img = raw_img.cuda(non_blocking=True) input_order = np.arange(cfg.N) # print("pre",input_order,cfg.blind,cfg.N) middle_img_idx = -1 if not cfg.input_with_middle_frame: middle = len(input_order) // 2 # print(middle) middle_img_idx = input_order[middle] input_order = np.r_[input_order[:middle],input_order[middle+1:]] else: middle = len(input_order) // 2 middle_img_idx = input_order[middle] input_order = np.arange(cfg.N) # print("post",input_order,middle_img_idx,cfg.blind,cfg.N) # -- add input noise -- burst_imgs = burst_imgs.cuda(non_blocking=True) burst_imgs_noisy = burst_imgs.clone() if cfg.input_noise: # noise = np.random.rand() * cfg.input_noise_level noise = cfg.input_noise_level if cfg.input_noise_middle_only: burst_imgs_noisy[middle_img_idx] = torch.normal(burst_imgs_noisy[middle_img_idx],noise) else: burst_imgs_noisy = torch.normal(burst_imgs_noisy,noise) # if cfg.middle_frame_random_erase: # for i in range(burst_imgs_noisy[middle_img_idx].shape[0]): # tmp = random_eraser(burst_imgs_noisy[middle_img_idx][i]) # burst_imgs_noisy[middle_img_idx][i] = tmp # burst_imgs_noisy = torch.normal(burst_imgs_noisy,noise) # print(torch.sum(burst_imgs_noisy[middle_img_idx] - burst_imgs[middle_img_idx])) # print(cfg.N,cfg.blind,[input_order[x] for x in range(cfg.input_N)]) if cfg.color_cat: stacked_burst = torch.cat([burst_imgs_noisy[input_order[x]] for x in range(cfg.input_N)],dim=1) else: stacked_burst = torch.stack([burst_imgs_noisy[input_order[x]] for x in range(cfg.input_N)],dim=1) # if cfg.input_noise: # stacked_burst = torch.normal(stacked_burst,noise) # -- extract target image -- if cfg.blind: t_img = burst_imgs[middle_img_idx] else: t_img = szm(raw_img.cuda(non_blocking=True)) # -- denoising -- rec_img = model(stacked_burst) # -- compute loss -- loss = F.mse_loss(t_img,rec_img) # -- dncnn denoising -- # rec_res = model(stacked_burst) # -- compute loss -- # t_res = t_img - burst_imgs[middle_img_idx] # loss = F.mse_loss(t_res,rec_res) # -- update info -- running_loss += loss.item() total_loss += loss.item() # -- BP and optimize -- loss.backward() optimizer.step() if (batch_idx % cfg.log_interval) == 0 and batch_idx > 0: # -- compute mse for fun -- BS = raw_img.shape[0] raw_img = raw_img.cuda(non_blocking=True) mse_loss = F.mse_loss(raw_img,rec_img+0.5,reduction='none').reshape(BS,-1) mse_loss = torch.mean(mse_loss,1).detach().cpu().numpy() psnr = np.mean(mse_to_psnr(mse_loss)) running_loss /= cfg.log_interval print("[%d/%d][%d/%d]: %2.3e [PSNR]: %2.3e"%(epoch, cfg.epochs, batch_idx, len(train_loader), running_loss,psnr)) running_loss = 0 total_loss /= len(train_loader) return total_loss
def train_loop(cfg, model, scheduler, train_loader, epoch, record_losses, writer): # -=-=-=-=-=-=-=-=-=-=- # # Setup for epoch # # -=-=-=-=-=-=-=-=-=-=- model.align_info.model.train() model.denoiser_info.model.train() model.unet_info.model.train() model.denoiser_info.model = model.denoiser_info.model.to(cfg.device) model.align_info.model = model.align_info.model.to(cfg.device) model.unet_info.model = model.unet_info.model.to(cfg.device) N = cfg.N total_loss = 0 running_loss = 0 szm = ScaleZeroMean() blocksize = 128 unfold = torch.nn.Unfold(blocksize, 1, 0, blocksize) use_record = False if record_losses is None: record_losses = pd.DataFrame({ 'burst': [], 'ave': [], 'ot': [], 'psnr': [], 'psnr_std': [] }) noise_type = cfg.noise_params.ntype # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Init Record Keeping # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- align_mse_losses, align_mse_count = 0, 0 rec_mse_losses, rec_mse_count = 0, 0 rec_ot_losses, rec_ot_count = 0, 0 running_loss, total_loss = 0, 0 dynamics_acc, dynamics_count = 0, 0 write_examples = False write_examples_iter = 200 noise_level = cfg.noise_params['g']['stddev'] # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Load Pre-Simulated Random Numbers # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if cfg.use_kindex_lmdb: kindex_ds = kIndexPermLMDB(cfg.batch_size, cfg.N) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Dataset Augmentation # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- transforms = [tvF.vflip, tvF.hflip, tvF.rotate] aug = RandomChoice(transforms) def apply_transformations(burst, gt_img): N, B = burst.shape[:2] gt_img_rs = rearrange(gt_img, 'b c h w -> 1 b c h w') all_images = torch.cat([gt_img_rs, burst], dim=0) all_images = rearrange(all_images, 'n b c h w -> (n b) c h w') tv_utils.save_image(all_images, 'aug_original.png', nrow=N + 1, normalize=True) aug_images = aug(all_images) tv_utils.save_image(aug_images, 'aug_augmented.png', nrow=N + 1, normalize=True) aug_images = rearrange(aug_images, '(n b) c h w -> n b c h w', b=B) aug_gt_img = aug_images[0] aug_burst = aug_images[1:] return aug_burst, aug_gt_img # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Half Precision # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # model.align_info.model.half() # model.denoiser_info.model.half() # model.unet_info.model.half() # models = [model.align_info.model, # model.denoiser_info.model, # model.unet_info.model] # for model_l in models: # model_l.half() # for layer in model_l.modules(): # if isinstance(layer, torch.nn.BatchNorm2d): # layer.float() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Init Loss Functions # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- alignmentLossMSE = BurstRecLoss() denoiseLossMSE = BurstRecLoss(alpha=cfg.kpn_burst_alpha, gradient_L1=~cfg.supervised) # denoiseLossOT = BurstResidualLoss() entropyLoss = EntropyLoss() # -=-=-=-=-=-=-=-=-=-=-=-=- # # Add hooks for epoch # # -=-=-=-=-=-=-=-=-=-=-=-=- align_hook = AlignmentFilterHooks(cfg.N) align_hooks = [] for kpn_module in model.align_info.model.children(): for name, layer in kpn_module.named_children(): if name == "filter_cls": align_hook_handle = layer.register_forward_hook(align_hook) align_hooks.append(align_hook_handle) # -=-=-=-=-=-=-=-=-=-=- # # Noise2Noise # # -=-=-=-=-=-=-=-=-=-=- noise_xform = get_noise_transform(cfg.noise_params, use_to_tensor=False) # -=-=-=-=-=-=-=-=-=-=- # # Final Configs # # -=-=-=-=-=-=-=-=-=-=- use_timer = False one = torch.FloatTensor([1.]).to(cfg.device) switch = True if use_timer: data_clock = Timer() clock = Timer() ds_size = len(train_loader) small_ds = ds_size < 500 steps_per_epoch = ds_size if not small_ds else 500 write_examples_iter = steps_per_epoch // 3 all_filters = [] # -=-=-=-=-=-=-=-=-=-=- # # Start Epoch # # -=-=-=-=-=-=-=-=-=-=- dynamics_acc_i = -1. if cfg.use_seed: init = torch.initial_seed() torch.manual_seed(cfg.seed + 1 + epoch + init) train_iter = iter(train_loader) for batch_idx in range(steps_per_epoch): # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Setting up for Iteration # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- setup iteration timer -- if use_timer: data_clock.tic() clock.tic() # -- grab data batch -- sample = next(train_iter) burst, raw_img, motion = sample['burst'], sample['clean'], sample[ 'directions'] raw_img_iid = sample['iid'] raw_img_iid = raw_img_iid.cuda(non_blocking=True) burst = burst.cuda(non_blocking=True) aligned, est_nnf = align_burst(cfg, burst, model) sim_images = subsample_aligned(cfg, aligned) burst_in, tgt_out = create_training_pairs(burst, sim_images) dn_losses = [] for burst, target in zip(burst_in, tgt_out): # -- forward pass -- est_denoised = model(burst) dn_loss = compute_denoising_loss(est_denoised, target) # -- compute grads -- if cfg.use_seed: torch.set_deterministic(False) dn_loss.backward() if cfg.use_seed: torch.set_deterministic(True) # -- backprop -- optim.step() scheduler.step() # -- store info -- losses.append(dn_loss.item()) # -- average over losses -- dn_loss = torch.mean(dn_losses) # -- alignment loss -- align_loss = compute_nnf_loss(gt_nnf, est_nnf) # -- total loss -- final_loss = dn_loss + align_loss running_loss += final_loss.item() total_loss += final_loss.item() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Printing to Stdout # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if (batch_idx % cfg.log_interval) == 0 and batch_idx > 0: # -- recompute model output for original images -- outputs = model(burst_og) m_aligned, m_aligned_ave, denoised, denoised_ave = outputs[:4] aligned_filters, denoised_filters = outputs[4:] # -- compute mse for fun -- B = raw_img.shape[0] raw_img = raw_img.cuda(non_blocking=True) raw_img = get_nmlz_tgt_img(cfg, raw_img) # -- psnr for [average of aligned frames] -- mse_loss = F.mse_loss(raw_img, m_aligned_ave, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_aligned_ave = np.mean(mse_to_psnr(mse_loss)) psnr_aligned_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [average of input, misaligned frames] -- mis_ave = torch.mean(burst_og, dim=0) if noise_type == "qis": mis_ave = quantize_img(cfg, mis_ave) mse_loss = F.mse_loss(raw_img, mis_ave, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_misaligned_ave = np.mean(mse_to_psnr(mse_loss)) psnr_misaligned_std = np.std(mse_to_psnr(mse_loss)) # tv_utils.save_image(raw_img,"raw.png",nrow=1,normalize=True,range=(-0.5,1.25)) # tv_utils.save_image(mis_ave,"mis.png",nrow=1,normalize=True,range=(-0.5,1.25)) # -- psnr for [bm3d] -- mid_img_og = burst[N // 2] bm3d_nb_psnrs = [] M = 4 if B > 4 else B for b in range(M): bm3d_rec = bm3d.bm3d(mid_img_og[b].cpu().transpose(0, 2) + 0.5, sigma_psd=noise_level / 255, stage_arg=bm3d.BM3DStages.ALL_STAGES) bm3d_rec = torch.FloatTensor(bm3d_rec).transpose(0, 2) # maybe an issue here b_loss = F.mse_loss(raw_img[b].cpu(), bm3d_rec, reduction='none').reshape(1, -1) b_loss = torch.mean(b_loss, 1).detach().cpu().numpy() bm3d_nb_psnr = np.mean(mse_to_psnr(b_loss)) bm3d_nb_psnrs.append(bm3d_nb_psnr) bm3d_nb_ave = np.mean(bm3d_nb_psnrs) bm3d_nb_std = np.std(bm3d_nb_psnrs) # -- psnr for input averaged frames -- # burst_ave = torch.mean(burst_og,dim=0) # mse_loss = F.mse_loss(raw_img,burst_ave,reduction='none').reshape(B,-1) # mse_loss = torch.mean(mse_loss,1).detach().cpu().numpy() # psnr_input_ave = np.mean(mse_to_psnr(mse_loss)) # psnr_input_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for aligned + denoised -- R = denoised.shape[1] raw_img_repN = raw_img.unsqueeze(1).repeat(1, R, 1, 1, 1) # if noise_type == "qis": denoised = quantize_img(cfg,denoised) # save_image(denoised_ave,"denoised_ave.png") # save_image(denoised,"denoised.png") mse_loss = F.mse_loss(raw_img_repN, denoised, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_denoised_ave = np.mean(mse_to_psnr(mse_loss)) psnr_denoised_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [model output image] -- mse_loss = F.mse_loss(raw_img, denoised_ave, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr = np.mean(mse_to_psnr(mse_loss)) psnr_std = np.std(mse_to_psnr(mse_loss)) # -- update losses -- running_loss /= cfg.log_interval # -- reconstruction MSE -- rec_mse_ave = rec_mse_losses / rec_mse_count rec_mse_losses, rec_mse_count = 0, 0 # -- reconstruction Dist. -- rec_ot_ave = rec_ot_losses / rec_ot_count rec_ot_losses, rec_ot_count = 0, 0 # -- ave dynamic acc -- ave_dyn_acc = dynamics_acc / dynamics_count * 100. dynamics_acc, dynamics_count = 0, 0 # -- write record -- if use_record: info = { 'burst': burst_loss, 'ave': ave_loss, 'ot': rec_ot_ave, 'psnr': psnr, 'psnr_std': psnr_std } record_losses = record_losses.append(info, ignore_index=True) # -- write to stdout -- write_info = (epoch, cfg.epochs, batch_idx, steps_per_epoch, running_loss, psnr, psnr_std, psnr_denoised_ave, psnr_denoised_std, psnr_aligned_ave, psnr_aligned_std, psnr_misaligned_ave, psnr_misaligned_std, bm3d_nb_ave, bm3d_nb_std, rec_mse_ave, ave_dyn_acc) #rec_ot_ave) #print("[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f [den]: %2.2f +/- %2.2f [al]: %2.2f +/- %2.2f [mis]: %2.2f +/- %2.2f [bm3d]: %2.2f +/- %2.2f [r-mse]: %.2e [r-ot]: %.2e" % write_info) print( "[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f [den]: %2.2f +/- %2.2f [al]: %2.2f +/- %2.2f [mis]: %2.2f +/- %2.2f [bm3d]: %2.2f +/- %2.2f [r-mse]: %.2e [dyn]: %.2e" % write_info, flush=True) # -- write to summary writer -- if writer: writer.add_scalar('train/running-loss', running_loss, cfg.global_step) writer.add_scalars('train/model-psnr', { 'ave': psnr, 'std': psnr_std }, cfg.global_step) writer.add_scalars('train/dn-frame-psnr', { 'ave': psnr_denoised_ave, 'std': psnr_denoised_std }, cfg.global_step) # -- reset loss -- running_loss = 0 # -- write examples -- if write_examples and (batch_idx % write_examples_iter) == 0 and ( batch_idx > 0 or cfg.global_step == 0): write_input_output(cfg, model, stacked_burst, aligned, denoised, all_filters, motion) if use_timer: clock.toc() if use_timer: print("data_clock", data_clock.average_time) print("clock", clock.average_time) cfg.global_step += 1 # -- remove hooks -- for hook in align_hooks: hook.remove() total_loss /= len(train_loader) return total_loss, record_losses
def train_loop(cfg, model, noise_critic, optimizer, criterion, train_loader, epoch, record_losses): # -=-=-=-=-=-=-=-=-=-=- # Setup for epoch # -=-=-=-=-=-=-=-=-=-=- model.train() model = model.to(cfg.device) N = cfg.N szm = ScaleZeroMean() blocksize = 128 unfold = torch.nn.Unfold(blocksize, 1, 0, blocksize) D = 5 * 10**3 use_record = False if record_losses is None: record_losses = pd.DataFrame({ 'burst': [], 'ave': [], 'ot': [], 'psnr': [], 'psnr_std': [] }) write_examples = True write_examples_iter = 800 noise_level = cfg.noise_params['g']['stddev'] # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Init Record Keeping # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- losses_nc, losses_nc_count = 0, 0 losses_mse, losses_mse_count = 0, 0 running_loss, total_loss = 0, 0 # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Init Loss Functions # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- lossRecMSE = LossRec(tensor_grad=cfg.supervised) lossBurstMSE = LossRecBurst(tensor_grad=cfg.supervised) # -=-=-=-=-=-=-=-=-=-=- # Final Configs # -=-=-=-=-=-=-=-=-=-=- use_timer = False one = torch.FloatTensor([1.]).to(cfg.device) switch = True train_iter = iter(train_loader) if use_timer: clock = Timer() # -=-=-=-=-=-=-=-=-=-=- # GAN Scheduler # -=-=-=-=-=-=-=-=-=-=- # -- noise critic steps -- if epoch == 0: disc_steps = 0 elif epoch < 3: disc_steps = 1 elif epoch < 10: disc_steps = 1 else: disc_steps = 1 # -- denoising steps -- if epoch == 0: gen_steps = 1 if epoch < 3: gen_steps = 15 if epoch < 10: gen_steps = 10 else: gen_steps = 10 # -- steps each epoch -- steps_per_iter = disc_steps * gen_steps steps_per_epoch = len(train_loader) // steps_per_iter if steps_per_epoch > 120: steps_per_epoch = 120 # -=-=-=-=-=-=-=-=-=-=- # Start Epoch # -=-=-=-=-=-=-=-=-=-=- for batch_idx in range(steps_per_epoch): for gen_step in range(gen_steps): # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Setting up for Iteration # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- setup iteration timer -- if use_timer: clock.tic() # -- zero gradients -- optimizer.zero_grad() model.zero_grad() model.denoiser_info.model.zero_grad() model.denoiser_info.optim.zero_grad() noise_critic.disc.zero_grad() noise_critic.optim.zero_grad() # -- grab data batch -- burst, res_imgs, raw_img, directions = next(train_iter) # -- getting shapes of data -- N, BS, C, H, W = burst.shape burst = burst.cuda(non_blocking=True) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Formatting Images for FP # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- creating some transforms -- stacked_burst = rearrange(burst, 'n b c h w -> b n c h w') cat_burst = rearrange(burst, 'n b c h w -> (b n) c h w') # -- extract target image -- mid_img = burst[N // 2] raw_zm_img = szm(raw_img.cuda(non_blocking=True)) if cfg.supervised: gt_img = raw_zm_img else: gt_img = mid_img # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Foward Pass # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- aligned, aligned_ave, denoised, denoised_ave, filters = model( burst) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # MSE (KPN) Reconstruction Loss # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- loss_rec = lossRecMSE(denoised_ave, gt_img) loss_burst = lossBurstMSE(denoised, gt_img) loss_mse = loss_rec + 100 * loss_burst gbs, spe = cfg.global_step, steps_per_epoch if epoch < 3: weight_mse = 10 else: weight_mse = 10 * 0.9999**(gbs - 3 * spe) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Noise Critic Loss # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- loss_nc = noise_critic.compute_residual_loss(denoised, gt_img) weight_nc = 1 # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Final Loss # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- final_loss = weight_mse * loss_mse + weight_nc * loss_nc # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Update Info for Record Keeping # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- update alignment kl loss info -- losses_nc += loss_nc.item() losses_nc_count += 1 # -- update reconstruction kl loss info -- losses_mse += loss_mse.item() losses_mse_count += 1 # -- update info -- running_loss += final_loss.item() total_loss += final_loss.item() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Backward Pass # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- compute the gradients! -- final_loss.backward() # -- backprop now. -- model.denoiser_info.optim.step() optimizer.step() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Iterate for Noise Critic # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- for disc_step in range(disc_steps): # -- zero gradients -- optimizer.zero_grad() model.zero_grad() model.denoiser_info.optim.zero_grad() noise_critic.disc.zero_grad() noise_critic.optim.zero_grad() # -- grab noisy data -- _burst, _res_imgs, _raw_img, _directions = next(train_iter) _burst = _burst.to(cfg.device) # -- generate "fake" data from noisy data -- _aligned, _aligned_ave, _denoised, _denoised_ave, _filters = model( _burst) _residuals = _denoised - _burst[N // 2].unsqueeze(1).repeat( 1, N, 1, 1, 1) # -- update discriminator -- loss_disc = noise_critic.update_disc(_residuals) # -- message to stdout -- first_update = (disc_step == 0) last_update = (disc_step == disc_steps - 1) iter_update = first_update or last_update # if (batch_idx % cfg.log_interval//2) == 0 and batch_idx > 0 and iter_update: print(f"[Noise Critic]: {loss_disc}") # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # Print Message to Stdout # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if (batch_idx % cfg.log_interval) == 0 and batch_idx > 0: # -- init -- BS = raw_img.shape[0] raw_img = raw_img.cuda(non_blocking=True) # -- psnr for [average of aligned frames] -- mse_loss = F.mse_loss(raw_img, aligned_ave + 0.5, reduction='none').reshape(BS, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_aligned_ave = np.mean(mse_to_psnr(mse_loss)) psnr_aligned_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [average of input, misaligned frames] -- mis_ave = torch.mean(stacked_burst, dim=1) mse_loss = F.mse_loss(raw_img, mis_ave + 0.5, reduction='none').reshape(BS, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_misaligned_ave = np.mean(mse_to_psnr(mse_loss)) psnr_misaligned_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [bm3d] -- bm3d_nb_psnrs = [] for b in range(BS): bm3d_rec = bm3d.bm3d(mid_img[b].cpu().transpose(0, 2) + 0.5, sigma_psd=noise_level / 255, stage_arg=bm3d.BM3DStages.ALL_STAGES) bm3d_rec = torch.FloatTensor(bm3d_rec).transpose(0, 2) b_loss = F.mse_loss(raw_img[b].cpu(), bm3d_rec, reduction='none').reshape(1, -1) b_loss = torch.mean(b_loss, 1).detach().cpu().numpy() bm3d_nb_psnr = np.mean(mse_to_psnr(b_loss)) bm3d_nb_psnrs.append(bm3d_nb_psnr) bm3d_nb_ave = np.mean(bm3d_nb_psnrs) bm3d_nb_std = np.std(bm3d_nb_psnrs) # -- psnr for aligned + denoised -- raw_img_repN = raw_img.unsqueeze(1).repeat(1, N, 1, 1, 1) mse_loss = F.mse_loss(raw_img_repN, denoised + 0.5, reduction='none').reshape(BS, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_denoised_ave = np.mean(mse_to_psnr(mse_loss)) psnr_denoised_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [model output image] -- mse_loss = F.mse_loss(raw_img, denoised_ave + 0.5, reduction='none').reshape(BS, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr = np.mean(mse_to_psnr(mse_loss)) psnr_std = np.std(mse_to_psnr(mse_loss)) # -- write record -- if use_record: record_losses = record_losses.append( { 'burst': burst_loss, 'ave': ave_loss, 'ot': ot_loss, 'psnr': psnr, 'psnr_std': psnr_std }, ignore_index=True) # -- update losses -- running_loss /= cfg.log_interval # -- average mse losses -- ave_losses_mse = losses_mse / losses_mse_count losses_mse, losses_mse_count = 0, 0 # -- average noise critic loss -- ave_losses_nc = losses_nc / losses_nc_count losses_nc, losses_nc_count = 0, 0 # -- write to stdout -- write_info = (epoch, cfg.epochs, batch_idx, steps_per_epoch, running_loss, psnr, psnr_std, psnr_denoised_ave, psnr_denoised_std, psnr_misaligned_ave, psnr_misaligned_std, bm3d_nb_ave, bm3d_nb_std, ave_losses_mse, ave_losses_nc) print( "[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f [den]: %2.2f +/- %2.2f [mis]: %2.2f +/- %2.2f [bm3d]: %2.2f +/- %2.2f [mse]: %.2e [nc]: %.2e" % write_info) running_loss = 0 # -- write examples -- if write_examples and (batch_idx % write_examples_iter) == 0 and ( batch_idx > 0 or cfg.global_step == 0): write_input_output(cfg, stacked_burst, aligned, denoised, filters, directions) if use_timer: clock.toc() if use_timer: print(clock) cfg.global_step += 1 total_loss /= len(train_loader) return total_loss, record_losses
def train_loop(cfg, model, train_loader, epoch, record_losses): # -=-=-=-=-=-=-=-=-=-=- # # Setup for epoch # # -=-=-=-=-=-=-=-=-=-=- model.align_info.model.train() model.denoiser_info.model.train() model.unet_info.model.train() model.denoiser_info.model = model.denoiser_info.model.to(cfg.device) model.align_info.model = model.align_info.model.to(cfg.device) model.unet_info.model = model.unet_info.model.to(cfg.device) N = cfg.N total_loss = 0 running_loss = 0 szm = ScaleZeroMean() blocksize = 128 unfold = torch.nn.Unfold(blocksize, 1, 0, blocksize) use_record = False if record_losses is None: record_losses = pd.DataFrame({ 'burst': [], 'ave': [], 'ot': [], 'psnr': [], 'psnr_std': [] }) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Init Record Keeping # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- align_mse_losses, align_mse_count = 0, 0 align_ot_losses, align_ot_count = 0, 0 rec_mse_losses, rec_mse_count = 0, 0 rec_ot_losses, rec_ot_count = 0, 0 running_loss, total_loss = 0, 0 write_examples = True noise_level = cfg.noise_params['g']['stddev'] # -=-=-=-=-=-=-=-=-=-=-=-=- # # Add hooks for epoch # # -=-=-=-=-=-=-=-=-=-=-=-=- align_hook = AlignmentFilterHooks(cfg.N) align_hooks = [] for kpn_module in model.align_info.model.children(): for name, layer in kpn_module.named_children(): if name == "filter_cls": align_hook_handle = layer.register_forward_hook(align_hook) align_hooks.append(align_hook_handle) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Init Loss Functions # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- alignmentLossMSE = BurstRecLoss() denoiseLossMSE = BurstRecLoss() # denoiseLossOT = BurstResidualLoss() entropyLoss = EntropyLoss() # -=-=-=-=-=-=-=-=-=-=- # # Final Configs # # -=-=-=-=-=-=-=-=-=-=- use_timer = False one = torch.FloatTensor([1.]).to(cfg.device) switch = True if use_timer: clock = Timer() train_iter = iter(train_loader) steps_per_epoch = len(train_loader) write_examples_iter = steps_per_epoch // 2 # -=-=-=-=-=-=-=-=-=-=- # # Start Epoch # # -=-=-=-=-=-=-=-=-=-=- for batch_idx in range(steps_per_epoch): # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Setting up for Iteration # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- setup iteration timer -- if use_timer: clock.tic() # -- zero gradients; ready 2 go -- model.align_info.model.zero_grad() model.align_info.optim.zero_grad() model.denoiser_info.model.zero_grad() model.denoiser_info.optim.zero_grad() model.unet_info.model.zero_grad() model.unet_info.optim.zero_grad() # -- grab data batch -- burst, res_imgs, raw_img, directions = next(train_iter) # -- getting shapes of data -- N, B, C, H, W = burst.shape burst = burst.cuda(non_blocking=True) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Formatting Images for FP # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- creating some transforms -- stacked_burst = rearrange(burst, 'n b c h w -> b n c h w') cat_burst = rearrange(burst, 'n b c h w -> (b n) c h w') # -- extract target image -- mid_img = burst[N // 2] raw_zm_img = szm(raw_img.cuda(non_blocking=True)) if cfg.supervised: gt_img = raw_zm_img else: gt_img = mid_img # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Check Some Gradients # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def mse_v_wassersteinG_check_some_gradients(cfg, burst, gt_img, model): grads = edict() gt_img_rs = gt_img.unsqueeze(1).repeat(1, N, 1, 1, 1) model.unet_info.model.zero_grad() burst.requires_grad_(True) outputs = model(burst) aligned, aligned_ave, denoised, denoised_ave = outputs[:4] aligned_filters, denoised_filters = outputs[4:] residuals = denoised - gt_img_rs P = 1. #residuals.numel() denoised.retain_grad() rec_mse = (denoised.reshape(B, -1) - gt_img.reshape(B, -1))**2 rec_mse.retain_grad() ones = P * torch.ones_like(rec_mse) rec_mse.backward(ones, retain_graph=True) grads.rmse = rec_mse.grad.clone().reshape(B, -1) grad_rec_mse = grads.rmse grads.dmse = denoised.grad.clone().reshape(B, -1) grad_denoised_mse = grads.dmse ones = torch.ones_like(rec_mse) grads.d_to_b = torch.autograd.grad(rec_mse, denoised, ones)[0].reshape(B, -1) model.unet_info.model.zero_grad() outputs = model(burst) aligned, aligned_ave, denoised, denoised_ave = outputs[:4] aligned_filters, denoised_filters = outputs[4:] # residuals = denoised - gt_img_rs # rec_ot = w_gaussian_bp(residuals,noise_level) denoised.retain_grad() rec_ot_v = (denoised - gt_img_rs)**2 rec_ot_v.retain_grad() rec_ot = (rec_ot_v.mean() - noise_level / 255.)**2 rec_ot.retain_grad() ones = P * torch.ones_like(rec_ot) rec_ot.backward(ones) grad_denoised_ot = denoised.grad.clone().reshape(B, -1) grads.dot = grad_denoised_ot grad_rec_ot = rec_ot_v.grad.clone().reshape(B, -1) grads.rot = grad_denoised_ot print("Gradient Name Info") for name, g in grads.items(): g_norm = g.norm().item() g_mean = g.mean().item() g_std = g.std().item() print(name, g.shape, g_norm, g_mean, g_std) print_pairs = False if print_pairs: print("All Gradient Ratios") for name_t, g_t in grads.items(): for name_b, g_b in grads.items(): ratio = g_t / g_b ratio_m = ratio.mean().item() ratio_std = ratio.std().item() print("[%s/%s] [%2.2e +/- %2.2e]" % (name_t, name_b, ratio_m, ratio_std)) use_true_mse = False if use_true_mse: print("Ratios with Estimated MSE Gradient") true_dmse = 2 * torch.mean(denoised_ave - gt_img)**2 ratio_mse = grads.dmse / true_dmse ratio_mse_dtb = grads.dmse / grads.d_to_b print(ratio_mse) print(ratio_mse_dtb) dot_v_dmse = True if dot_v_dmse: print("Ratio of Denoised OT and Denoised MSE") ratio_mseot = (grads.dmse / grads.dot) print(ratio_mseot.mean(), ratio_mseot.std()) ratio_mseot = ratio_mseot[0, 0].item() c1 = torch.mean((denoised - gt_img_rs)**2).item() c2 = noise_level / 255 m = torch.mean(gt_img_rs).item() true_ratio = 2. * (c1 - c2) / (np.product(burst.shape)) # diff = denoised.reshape(B,-1)-gt_img_rs.reshape(B,-1) # true_ratio = 2.*(c1 - c2) * ( diff / ( np.product(burst.shape) ) ) # print(c1,c2,m,true_ratio,1./true_ratio) ratio_mseot = (grads.dmse / (grads.dot)) print(ratio_mseot * true_ratio) # ratio_mseot = (grads.dmse / ( grads.dot / diff) ) # print(ratio_mseot*true_ratio) # print(ratio_mseot.mean(),ratio_mseot.std()) exit() model.unet_info.model.zero_grad() # mse_v_wassersteinG_check_some_gradients(cfg,burst,gt_img,model) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Foward Pass # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- outputs = model(burst) aligned, aligned_ave, denoised, denoised_ave = outputs[:4] aligned_filters, denoised_filters = outputs[4:] # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Require Approx Equal Filter Norms (aligned) # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- aligned_filters_rs = rearrange(aligned_filters, 'b n k2 c h w -> b n (k2 c h w)') norms = torch.norm(aligned_filters_rs, p=2., dim=2) norms_mid = norms[:, N // 2].unsqueeze(1).repeat(1, N) norm_loss_align = torch.mean( torch.pow(torch.abs(norms - norms_mid), 1.)) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Require Approx Equal Filter Norms (denoised) # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- denoised_filters = rearrange(denoised_filters, 'b n k2 c h w -> b n (k2 c h w)') norms = torch.norm(denoised_filters, p=2., dim=2) norms_mid = norms[:, N // 2].unsqueeze(1).repeat(1, N) norm_loss_denoiser = torch.mean( torch.pow(torch.abs(norms - norms_mid), 1.)) norm_loss_coeff = 0. # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Decrease Entropy within a Kernel # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- filters_entropy = 0 filters_entropy_coeff = 0. # 1000. all_filters = [] L = len(align_hook.filters) iter_filters = align_hook.filters if L > 0 else [aligned_filters] for filters in iter_filters: filters_shaped = rearrange(filters, 'b n k2 c h w -> (b n c h w) k2', n=N) filters_entropy += entropyLoss(filters_shaped) all_filters.append(filters) if L > 0: filters_entropy /= L all_filters = torch.stack(all_filters, dim=1) align_hook.clear() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Increase Entropy across each Kernel # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- filters_dist_entropy = 0 # -- across each frame -- # filters_shaped = rearrange(all_filters,'b l n k2 c h w -> (b l) (n c h w) k2') # filters_shaped = torch.mean(filters_shaped,dim=1) # filters_dist_entropy += -1 * entropyLoss(filters_shaped) # -- across each batch -- filters_shaped = rearrange(all_filters, 'b l n k2 c h w -> (n l) (b c h w) k2') filters_shaped = torch.mean(filters_shaped, dim=1) filters_dist_entropy += -1 * entropyLoss(filters_shaped) # -- across each kpn cascade -- # filters_shaped = rearrange(all_filters,'b l n k2 c h w -> (b n) (l c h w) k2') # filters_shaped = torch.mean(filters_shaped,dim=1) # filters_dist_entropy += -1 * entropyLoss(filters_shaped) filters_dist_coeff = 0 # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Alignment Losses (MSE) # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- losses = alignmentLossMSE(aligned, aligned_ave, gt_img, cfg.global_step) ave_loss, burst_loss = [loss.item() for loss in losses] align_mse = np.sum(losses) align_mse_coeff = 0. #0.95**cfg.global_step # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Alignment Losses (Distribution) # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # pad = 2*cfg.N # fs = cfg.dynamic.frame_size residuals = aligned - gt_img.unsqueeze(1).repeat(1, N, 1, 1, 1) # centered_residuals = tvF.center_crop(residuals,(fs-pad,fs-pad)) # centered_residuals = tvF.center_crop(residuals,(fs//2,fs//2)) # align_ot = kl_gaussian_bp(residuals,noise_level,flip=True) align_ot = kl_gaussian_bp_patches(residuals, noise_level, flip=True, patchsize=16) align_ot_coeff = 0 # 100. # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Reconstruction Losses (MSE) # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- losses = denoiseLossMSE(denoised, denoised_ave, gt_img, cfg.global_step) ave_loss, burst_loss = [loss.item() for loss in losses] rec_mse = np.sum(losses) rec_mse_coeff = 0.95**cfg.global_step # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Reconstruction Losses (Distribution) # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- computation -- gt_img_rs = gt_img.unsqueeze(1).repeat(1, N, 1, 1, 1) residuals = denoised - gt_img.unsqueeze(1).repeat(1, N, 1, 1, 1) # rec_ot = kl_gaussian_bp(residuals,noise_level) rec_ot = kl_gaussian_bp(residuals, noise_level, flip=True) # rec_ot /= 2. # alpha_grid = [0.,1.,5.,10.,25.] # for alpha in alpha_grid: # # residuals = torch.normal(torch.zeros_like(residuals)+ gt_img_rs*alpha/255.,noise_level/255.) # residuals = torch.normal(torch.zeros_like(residuals),noise_level/255.+ gt_img_rs*alpha/255.) # rec_ot_v2_a = kl_gaussian_bp_patches(residuals,noise_level,patchsize=16) # rec_ot_v1_b = kl_gaussian_bp(residuals,noise_level,flip=True) # rec_ot_v2_b = kl_gaussian_bp_patches(residuals,noise_level,flip=True,patchsize=16) # rec_ot_all = torch.tensor([rec_ot_v1_a,rec_ot_v2_a,rec_ot_v1_b,rec_ot_v2_b]) # rec_ot_v2 = (rec_ot_v2_a + rec_ot_v2_b).item()/2. # print(alpha,torch.min(rec_ot_all),torch.max(rec_ot_all),rec_ot_v1,rec_ot_v2) # exit() # rec_ot = w_gaussian_bp(residuals,noise_level) # print(residuals.numel()) rec_ot_coeff = 100. #residuals.numel()*2. # 1000.# - .997**cfg.global_step # residuals = rearrange(residuals,'b n c h w -> b n (h w) c') # rec_ot_pair_loss_v1 = w_gaussian_bp(residuals,noise_level) # rec_ot_loss_v1 = kl_gaussian_bp(residuals,noise_level,flip=True) # rec_ot_loss_v1 = kl_gaussian_pair_bp(residuals) # rec_ot_loss_v1 = ot_pairwise2gaussian_bp(residuals,K=6,reg=reg) # rec_ot_loss_v2 = ot_pairwise_bp(residuals,K=3) # rec_ot_pair_loss_v2 = torch.FloatTensor([0.]).to(cfg.device) # rec_ot = (rec_ot_loss_v1 + rec_ot_pair_loss_v2) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Final Losses # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- rec_loss = rec_ot_coeff * rec_ot + rec_mse_coeff * rec_mse norm_loss = norm_loss_coeff * (norm_loss_denoiser + norm_loss_align) align_loss = align_mse_coeff * align_mse + align_ot_coeff * align_ot entropy_loss = 0 #filters_entropy_coeff * filters_entropy + filters_dist_coeff * filters_dist_entropy # final_loss = align_loss + rec_loss + entropy_loss + norm_loss final_loss = rec_loss # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Record Keeping # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- alignment MSE -- align_mse_losses += align_mse.item() align_mse_count += 1 # -- alignment Dist -- align_ot_losses += align_ot.item() align_ot_count += 1 # -- reconstruction MSE -- rec_mse_losses += rec_mse.item() rec_mse_count += 1 # -- reconstruction Dist. -- rec_ot_losses += rec_ot.item() rec_ot_count += 1 # -- total loss -- running_loss += final_loss.item() total_loss += final_loss.item() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Gradients & Backpropogration # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- compute the gradients! -- final_loss.backward() # -- backprop now. -- model.align_info.optim.step() model.denoiser_info.optim.step() model.unet_info.optim.step() # for name,params in model.unet_info.model.named_parameters(): # if not ("weight" in name): continue # print(params.grad.norm()) # # print(module.conv1.parameters()) # # print(module.conv1.data.grad) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Printing to Stdout # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if (batch_idx % cfg.log_interval) == 0 and batch_idx > 0: # -- compute mse for fun -- B = raw_img.shape[0] raw_img = raw_img.cuda(non_blocking=True) # -- psnr for [average of aligned frames] -- mse_loss = F.mse_loss(raw_img, aligned_ave + 0.5, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_aligned_ave = np.mean(mse_to_psnr(mse_loss)) psnr_aligned_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [average of input, misaligned frames] -- mis_ave = torch.mean(stacked_burst, dim=1) mse_loss = F.mse_loss(raw_img, mis_ave + 0.5, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_misaligned_ave = np.mean(mse_to_psnr(mse_loss)) psnr_misaligned_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [bm3d] -- bm3d_nb_psnrs = [] M = 10 if B > 10 else B for b in range(B): bm3d_rec = bm3d.bm3d(mid_img[b].cpu().transpose(0, 2) + 0.5, sigma_psd=noise_level / 255, stage_arg=bm3d.BM3DStages.ALL_STAGES) bm3d_rec = torch.FloatTensor(bm3d_rec).transpose(0, 2) b_loss = F.mse_loss(raw_img[b].cpu(), bm3d_rec, reduction='none').reshape(1, -1) b_loss = torch.mean(b_loss, 1).detach().cpu().numpy() bm3d_nb_psnr = np.mean(mse_to_psnr(b_loss)) bm3d_nb_psnrs.append(bm3d_nb_psnr) bm3d_nb_ave = np.mean(bm3d_nb_psnrs) bm3d_nb_std = np.std(bm3d_nb_psnrs) # -- psnr for aligned + denoised -- raw_img_repN = raw_img.unsqueeze(1).repeat(1, N, 1, 1, 1) mse_loss = F.mse_loss(raw_img_repN, denoised + 0.5, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_denoised_ave = np.mean(mse_to_psnr(mse_loss)) psnr_denoised_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [model output image] -- mse_loss = F.mse_loss(raw_img, denoised_ave + 0.5, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr = np.mean(mse_to_psnr(mse_loss)) psnr_std = np.std(mse_to_psnr(mse_loss)) # -- update losses -- running_loss /= cfg.log_interval # -- alignment MSE -- align_mse_ave = align_mse_losses / align_mse_count align_mse_losses, align_mse_count = 0, 0 # -- alignment Dist. -- align_ot_ave = align_ot_losses / align_ot_count align_ot_losses, align_ot_count = 0, 0 # -- reconstruction MSE -- rec_mse_ave = rec_mse_losses / rec_mse_count rec_mse_losses, rec_mse_count = 0, 0 # -- reconstruction Dist. -- rec_ot_ave = rec_ot_losses / rec_ot_count rec_ot_losses, rec_ot_count = 0, 0 # -- write record -- if use_record: info = { 'burst': burst_loss, 'ave': ave_loss, 'ot': rec_ot_ave, 'psnr': psnr, 'psnr_std': psnr_std } record_losses = record_losses.append(info, ignore_index=True) # -- write to stdout -- write_info = (epoch, cfg.epochs, batch_idx, len(train_loader), running_loss, psnr, psnr_std, psnr_denoised_ave, psnr_denoised_std, psnr_aligned_ave, psnr_aligned_std, psnr_misaligned_ave, psnr_misaligned_std, bm3d_nb_ave, bm3d_nb_std, rec_mse_ave, rec_ot_ave) print( "[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f [den]: %2.2f +/- %2.2f [al]: %2.2f +/- %2.2f [mis]: %2.2f +/- %2.2f [bm3d]: %2.2f +/- %2.2f [r-mse]: %.2e [r-ot]: %.2e" % write_info) running_loss = 0 # -- write examples -- if write_examples and (batch_idx % write_examples_iter) == 0 and ( batch_idx > 0 or cfg.global_step == 0): write_input_output(cfg, model, stacked_burst, aligned, denoised, all_filters, directions) if use_timer: clock.toc() if use_timer: print(clock) cfg.global_step += 1 # -- remove hooks -- for hook in align_hooks: hook.remove() total_loss /= len(train_loader) return total_loss, record_losses
def train_loop(cfg, model, optimizer, scheduler, train_loader, epoch, record_losses, writer): # -=-=-=-=-=-=-=-=-=-=- # # Setup for epoch # # -=-=-=-=-=-=-=-=-=-=- model.train() model = model.to(cfg.gpuid) N = cfg.N total_loss = 0 running_loss = 0 szm = ScaleZeroMean() blocksize = 128 unfold = torch.nn.Unfold(blocksize, 1, 0, blocksize) use_record = False if record_losses is None: record_losses = pd.DataFrame({ 'burst': [], 'ave': [], 'ot': [], 'psnr': [], 'psnr_std': [] }) noise_type = cfg.noise_params.ntype # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Init Record Keeping # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- align_mse_losses, align_mse_count = 0, 0 rec_mse_losses, rec_mse_count = 0, 0 rec_ot_losses, rec_ot_count = 0, 0 running_loss, total_loss = 0, 0 write_examples = False write_examples_iter = 200 noise_level = cfg.noise_params['g']['stddev'] # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Load Pre-Simulated Random Numbers # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if cfg.use_kindex_lmdb: kindex_ds = kIndexPermLMDB(cfg.batch_size, cfg.N) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Dataset Augmentation # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- transforms = [tvF.vflip, tvF.hflip, tvF.rotate] aug = RandomChoice(transforms) def apply_transformations(burst, gt_img): N, B = burst.shape[:2] gt_img_rs = rearrange(gt_img, 'b c h w -> 1 b c h w') all_images = torch.cat([gt_img_rs, burst], dim=0) all_images = rearrange(all_images, 'n b c h w -> (n b) c h w') tv_utils.save_image(all_images, 'aug_original.png', nrow=N + 1, normalize=True) aug_images = aug(all_images) tv_utils.save_image(aug_images, 'aug_augmented.png', nrow=N + 1, normalize=True) aug_images = rearrange(aug_images, '(n b) c h w -> n b c h w', b=B) aug_gt_img = aug_images[0] aug_burst = aug_images[1:] return aug_burst, aug_gt_img # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Half Precision # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # model.align_info.model.half() # model.denoiser_info.model.half() # model.unet_info.model.half() # models = [model.align_info.model, # model.denoiser_info.model, # model.unet_info.model] # for model_l in models: # model_l.half() # for layer in model_l.modules(): # if isinstance(layer, torch.nn.BatchNorm2d): # layer.float() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Init Loss Functions # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- alignmentLossMSE = BurstRecLoss() denoiseLossMSE = BurstRecLoss(alpha=cfg.kpn_burst_alpha, gradient_L1=~cfg.supervised) # denoiseLossOT = BurstResidualLoss() entropyLoss = EntropyLoss() # -=-=-=-=-=-=-=-=-=-=- # # Noise2Noise # # -=-=-=-=-=-=-=-=-=-=- noise_xform = get_noise_transform(cfg.noise_params, use_to_tensor=False) # -=-=-=-=-=-=-=-=-=-=- # # Final Configs # # -=-=-=-=-=-=-=-=-=-=- random_crop = tvT.RandomCrop(cfg.byol_patchsize) use_timer = False one = torch.FloatTensor([1.]).to(cfg.device) switch = True if use_timer: data_clock = Timer() clock = Timer() train_iter = iter(train_loader) ds_size = len(train_loader) small_ds = ds_size < 500 steps_per_epoch = ds_size if not small_ds else 500 write_examples_iter = steps_per_epoch // 3 all_filters = [] # -=-=-=-=-=-=-=-=-=-=- # # Start Epoch # # -=-=-=-=-=-=-=-=-=-=- for batch_idx in range(steps_per_epoch): # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Setting up for Iteration # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- setup iteration timer -- if use_timer: data_clock.tic() clock.tic() # -- grab data batch -- if small_ds and batch_idx >= ds_size: train_iter = iter(train_loader) # reset if too big sample = next(train_iter) burst, raw_img, directions = sample['burst'], sample['clean'], sample[ 'directions'] burst = burst.cuda(non_blocking=True) # -- handle possibly cached simulated bursts -- if 'sim_burst' in sample: sim_burst = rearrange(sample['sim_burst'], 'b n k c h w -> n b k c h w') else: sim_burst = None if sim_burst is None and not (cfg.n2n or cfg.supervised): if sim_burst is None: if cfg.use_kindex_lmdb: kindex = kindex_ds[batch_idx].cuda(non_blocking=True) else: kindex = None query = burst[[N // 2]] database = torch.cat([burst[:N // 2], burst[N // 2 + 1:]]) sim_burst = compute_similar_bursts( cfg, query, database, cfg.sim_K, noise_level / 255., patchsize=cfg.sim_patchsize, shuffle_k=cfg.sim_shuffleK, kindex=kindex, only_middle=cfg.sim_only_middle, search_method=cfg.sim_method, db_level="frame") if cfg.n2n or cfg.supervised: sim_burst = burst.unsqueeze(2).repeat(1, 1, 2, 1, 1, 1) else: sim_burst = sim_burst.cuda(non_blocking=True) if use_timer: data_clock.toc() # -- getting shapes of data -- N, B, C, H, W = burst.shape burst = burst.cuda(non_blocking=True) raw_zm_img = szm(raw_img.cuda(non_blocking=True)) burst_og = burst.clone() mid_img_og = burst[N // 2] # -- shuffle over Simulated Samples -- k_ins, k_outs = create_k_grid(sim_burst, shuffle=True) # k_ins,k_outs = [k_ins[0]],[k_outs[0]] for k_in, k_out in zip(k_ins, k_outs): if k_in == k_out: continue # -- zero gradients; ready 2 go -- optimizer.zero_grad() model.zero_grad() # -- compute input/output data -- if cfg.sim_only_middle: midi = 0 if sim_burst.shape[0] == 1 else N // 2 left_burst, right_burst = burst[:N // 2], burst[N // 2 + 1:] burst = torch.cat( [left_burst, sim_burst[[midi], :, k_in], right_burst], dim=0) mid_img = sim_burst[midi, :, k_out] else: burst = sim_burst[:, :, k_in] mid_img = sim_burst[N // 2, :, k_out] # mid_img = sim_burst[N//2,:] # print(burst.shape,mid_img.shape) # print(F.mse_loss(burst,mid_img).item()) if cfg.supervised: gt_img = get_nmlz_img(cfg, raw_img).cuda(non_blocking=True) elif cfg.n2n: gt_img = noise_xform(raw_img).cuda(non_blocking=True) else: gt_img = mid_img # gt_img = torch.normal(raw_zm_img,noise_level/255.) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Dataset Augmentation # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # burst,gt_img = apply_transformations(burst,gt_img) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Experimentally Set Hyperparams # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- [before training] setting the ps and nh -- # test_ps_nh_sizes(cfg,model,burst) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Formatting Images & FP # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- patches = sample_burst_patches(cfg, model, burst + 0.5) input_patches_0 = model.patch_helper.form_input_patches(patches) f_patches = torch.flip(patches, dims=(0, )) # reverse input_patches_1 = model.patch_helper.form_input_patches(f_patches) final_loss = model(input_patches_0) final_loss += model(input_patches_1) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Record Keeping # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- total loss -- running_loss += final_loss.item() total_loss += final_loss.item() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Gradients & Backpropogration # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- compute the gradients! -- final_loss.backward() # -- backprop now. -- optimizer.step() model.update_moving_average() # scheduler.step() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Printing to Stdout # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if (batch_idx % cfg.log_interval) == 0 and batch_idx > 0: # -- update losses -- running_loss /= cfg.log_interval # -- write to stdout -- write_info = (epoch, cfg.epochs, batch_idx, steps_per_epoch, running_loss) print("[%d/%d][%d/%d]: %2.3e" % write_info) nbatches = 2 burst = burst[:, :nbatches] # limit batch size to run test psnrs_sim = test_sim_search(cfg, burst + 0.5, model) psnrs_ftr = psnrs_sim[cfg.byol_backbone_name] psnrs_pix = psnrs_sim["pix"] print_psnr_results(psnrs_ftr, "[PSNR-ftr]") print_psnr_results(psnrs_pix, "[PSNR-pix]") print_edge_info(burst) # psnrs = test_sim_search(cfg,burst,model) # print_psnr_results(psnrs,"[PSNR-ftr]") # psnrs = test_sim_search_pix(cfg,burst,model) # print_psnr_results(psnrs,"[PSNR-pix]") # -- reset loss -- running_loss = 0 if use_timer: clock.toc() if use_timer: print("data_clock", data_clock.average_time) print("clock", clock.average_time) cfg.global_step += 1 total_loss /= len(train_loader) return total_loss, record_losses
def train_loop_offset(cfg,model,optimizer,criterion,train_loader,epoch): model.train() model = model.to(cfg.device) N = cfg.N total_loss = 0 running_loss = 0 sf_losses,sf_count = 0,0 kl_losses,kl_count = 0,0 temporal_losses,temporal_count = 0,0 write_examples = True write_examples_iter = 800 szm = ScaleZeroMean() record = init_record() use_record = False # if cfg.N != 5: return for batch_idx, (burst_imgs, res_imgs, raw_img, directions) in enumerate(train_loader): optimizer.zero_grad() model.zero_grad() # fig,ax = plt.subplots(figsize=(10,10)) # imgs = burst_imgs + 0.5 # imgs.clamp_(0.,1.) # raw_img = raw_img.expand(burst_imgs.shape) # print(imgs.shape,raw_img.shape) # all_img = torch.cat([imgs,raw_img],dim=1) # print(all_img.shape) # grids = [tv_utils.make_grid(all_img[i],nrow=16) for i in range(cfg.dynamic.frames)] # ims = [[ax.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in grids] # ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True) # Writer = animation.writers['ffmpeg'] # writer = Writer(fps=1, metadata=dict(artist='Me'), bitrate=1800) # ani.save(f"{settings.ROOT_PATH}/train_loop_voc.mp4", writer=writer) # print("I DID IT!") # return # -- reshaping of data -- # raw_img = raw_img.cuda(non_blocking=True) input_order = np.arange(cfg.N) # print("pre",input_order,cfg.blind,cfg.N) middle_img_idx = -1 if not cfg.input_with_middle_frame: middle = len(input_order) // 2 # print(middle) middle_img_idx = input_order[middle] # input_order = np.r_[input_order[:middle],input_order[middle+1:]] else: middle = len(input_order) // 2 input_order = np.arange(cfg.N) middle_img_idx = input_order[middle] # input_order = np.arange(cfg.N) # print("post",input_order,cfg.blind,cfg.N,middle_img_idx) burst_imgs = burst_imgs.cuda(non_blocking=True) # print(cfg.N,cfg.blind,[input_order[x] for x in range(cfg.input_N)]) # stacked_burst = torch.cat([burst_imgs[input_order[x]] for x in range(cfg.input_N)],dim=1) # print("stacked_burst",stacked_burst.shape) # print("burst_imgs.shape",burst_imgs.shape) # print("stacked_burst.shape",stacked_burst.shape) # -- add input noise -- burst_imgs_noisy = burst_imgs.clone() if cfg.input_noise: noise = np.random.rand() * cfg.input_noise_level if cfg.input_noise_middle_only: burst_imgs_noisy[middle_img_idx] = torch.normal(burst_imgs_noisy[middle_img_idx],noise) else: burst_imgs_noisy = torch.normal(burst_imgs_noisy,noise) # -- create inputs for kpn -- stacked_burst = torch.stack([burst_imgs_noisy[input_order[x]] for x in range(cfg.input_N)],dim=1) cat_burst = torch.cat([burst_imgs_noisy[input_order[x]] for x in range(cfg.input_N)],dim=1) # print(stacked_burst.shape) # print(cat_burst.shape) # -- extract target image -- mid_img = burst_imgs[middle_img_idx] raw_img_zm = szm(raw_img.cuda(non_blocking=True)) if cfg.supervised: t_img = szm(raw_img.cuda(non_blocking=True)) else: t_img = burst_imgs[middle_img_idx] # -- direct denoising -- mis_ave = torch.mean(stacked_burst,dim=1) # aligned,rec_img,temporal_loss,filters = model(cat_burst,stacked_burst) aligned,rec_img,filters = model(cat_burst,stacked_burst) temporal_loss = torch.FloatTensor([-1.]).to(cfg.device) # print("(a) [m: %2.2e] [std: %2.2e] vs [tgt: %2.2e]" % (torch.mean(mid_img - raw_img_zm).item(),F.mse_loss(mid_img,raw_img_zm).item(),(25./255)**2) ) # r_raw_img_zm = raw_img_zm.unsqueeze(1).repeat(1,N,1,1,1) # print("(b) [m: %2.2e] [std: %2.2e] vs [tgt: %2.2e]" % (torch.mean(aligned - r_raw_img_zm).item(),F.mse_loss(aligned,r_raw_img_zm).item(),(25./255)**2) ) # -- compare with stacked burst -- # print(cfg.blind,t_img.min(),t_img.max(),t_img.mean()) # rec_img = rec_img.expand(t_img.shape) # loss = F.mse_loss(t_img,rec_img) # -- sparse filter loss (sf_loss) -- # sf_loss = sparse_filter_loss(filters) sf_loss = torch.FloatTensor([-1.]).to(cfg.device) # -- compute loss to optimize -- losses = criterion(aligned, rec_img, t_img, cfg.global_step) loss = np.sum(losses) #+ sf_loss + temporal_loss # loss = losses[1] kpn_loss = loss kpn_coeff = 1. # .9997**cfg.global_step # temporal_loss = temporal_loss.item() # mse_loss = F.mse_loss(rec_img,mid_img) # -- compute ot loss to optimize -- # residuals = aligned - rec_img.unsqueeze(1).repeat(1,N,1,1,1) # residuals = rearrange(residuals,'b n c h w -> b n (h w) c') # ot_loss = ot_pairwise_bp(residuals,reg=1.0,K=5) # ot_coeff = 1 - .997**cfg.global_step # -- compute kl loss to optimize -- if cfg.supervised: kl_ref = szm(raw_img.cuda(non_blocking=True)) else: kl_ref = rec_img residuals = aligned - kl_ref.unsqueeze(1).repeat(1,N,1,1,1) residuals = rearrange(residuals,'b n c h w -> b n (h w) c') kl_loss = kl_pairwise_bp(residuals,K=100,supervised=cfg.supervised) kl_coeff = 100# - .997**cfg.global_step # kl_loss = torch.FloatTensor([-1.]).to(cfg.device) # -- final loss -- # loss = ot_coeff * ot_loss + kpn_loss # loss = kl_coeff * kl_loss + kpn_coeff * kpn_loss loss = kpn_coeff * kpn_loss # -- update info -- running_loss += loss.item() total_loss += loss.item() # -- update sparse filter loss info -- sf_losses += sf_loss.item() sf_count += 1 # -- update temporal loss info -- temporal_losses += temporal_loss.item() temporal_count += 1 # -- update temporal loss info -- kl_losses += kl_loss.item() kl_count += 1 # -- BP and optimize -- loss.backward() optimizer.step() if (batch_idx % cfg.log_interval) == 0 and batch_idx > 0: # -- compute mse for [rec img] -- BS = raw_img.shape[0] raw_img = raw_img.cuda(non_blocking=True) mse_loss = F.mse_loss(raw_img,rec_img+0.5,reduction='none').reshape(BS,-1) mse_loss = torch.mean(mse_loss,1).detach().cpu().numpy() psnr_ave = np.mean(mse_to_psnr(mse_loss)) psnr_std = np.std(mse_to_psnr(mse_loss)) running_loss /= cfg.log_interval # -- psnr for misaligned ave -- mse_loss = F.mse_loss(raw_img,mis_ave+0.5,reduction='none').reshape(BS,-1) mse_loss = torch.mean(mse_loss,1).detach().cpu().numpy() mis_psnr_ave = np.mean(mse_to_psnr(mse_loss)) mis_psnr_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [bm3d] -- bm3d_nb_psnrs = [] for b in range(BS): bm3d_rec = bm3d.bm3d(mid_img[b].cpu().transpose(0,2)+0.5, sigma_psd=25/255, stage_arg=bm3d.BM3DStages.ALL_STAGES) bm3d_rec = torch.FloatTensor(bm3d_rec).transpose(0,2) b_loss = F.mse_loss(raw_img[b].cpu(),bm3d_rec,reduction='none').reshape(BS,-1) b_loss = torch.mean(b_loss,1).detach().cpu().numpy() bm3d_nb_psnr = np.mean(mse_to_psnr(b_loss)) bm3d_nb_psnrs.append(bm3d_nb_psnr) bm3d_nb_ave = np.mean(bm3d_nb_psnrs) bm3d_nb_std = np.std(bm3d_nb_psnrs) # -- temporal loss -- ave_temporal_loss = temporal_losses / temporal_count if temporal_count > 0 else 0 temporal_losses,temporal_count = 0,0 # -- sparse filter loss -- ave_sf_loss = sf_losses / sf_count if sf_count > 0 else 0 sf_losses,sf_count = 0,0 # -- kl loss -- ave_kl_loss = kl_losses / kl_count if kl_count > 0 else 0 kl_losses,kl_count = 0,0 # -- write to stdout -- write_info = (epoch, cfg.epochs, batch_idx,len(train_loader),running_loss,psnr_ave,psnr_std,bm3d_nb_ave,bm3d_nb_std, mis_psnr_ave,mis_psnr_std,ave_temporal_loss,ave_sf_loss,ave_kl_loss) print("[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f [bm3d]: %2.2f +/- %2.2f [misaligned]: %2.2f +/- %2.2f [loss-t]: %.2e [loss-sf]: %.2e [loss-kl]: %.2e" % write_info) # print("[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f"%(epoch, cfg.epochs, batch_idx, # len(train_loader), # running_loss,psnr_ave,psnr_std)) running_loss = 0 # -- record information -- if use_record: rec = rec_img raw = raw_img_zm frame_results = compute_ot_frame(aligned,rec,raw,reg=0.5) burst_results = compute_ot_burst(aligned,rec,raw,reg=0.5) psnr_record = {'psnr_ave':psnr_ave,'psnr_std':psnr_std} kpn_record = {'kpn_loss':kpn_loss} new_record = merge_records(frame_results,burst_results,psnr_record,kpn_record) record = record.append(new_record,ignore_index=True) # -- write examples -- if write_examples and (batch_idx % write_examples_iter) == 0: write_input_output(cfg,model,stacked_burst,aligned,filters,directions) cfg.global_step += 1 total_loss /= len(train_loader) return total_loss,record
def test_loop_offset(cfg,model,criterion,test_loader,epoch): model.eval() model = model.to(cfg.device) total_psnr = 0 total_loss = 0 psnrs = np.zeros( (len(test_loader),cfg.batch_size) ) szm = ScaleZeroMean() with torch.no_grad(): for batch_idx, (burst_imgs, res_imgs, raw_img, directions) in enumerate(test_loader): BS = raw_img.shape[0] # -- selecting input frames -- input_order = np.arange(cfg.N) # print("pre",input_order) middle_img_idx = -1 if not cfg.input_with_middle_frame: middle = cfg.N // 2 # print(middle) middle_img_idx = input_order[middle] # input_order = np.r_[input_order[:middle],input_order[middle+1:]] else: middle = len(input_order) // 2 input_order = np.arange(cfg.N) middle_img_idx = input_order[middle] # input_order = np.arange(cfg.N) # -- reshaping of data -- raw_img = raw_img.cuda(non_blocking=True) burst_imgs = burst_imgs.cuda(non_blocking=True) stacked_burst = torch.stack([burst_imgs[input_order[x]] for x in range(cfg.input_N)],dim=1) cat_burst = torch.cat([burst_imgs[input_order[x]] for x in range(cfg.input_N)],dim=1) # -- extract images for psnr -- mid_img = burst_imgs[middle_img_idx] raw_img_zm = szm(raw_img.cuda(non_blocking=True)) # -- denoising -- rec_img = model(cat_burst,stacked_burst)[1].detach() # if not cfg.input_with_middle_frame: # rec_img = model(cat_burst,stacked_burst)[1] # else: # rec_img = model(cat_burst,stacked_burst)[0][middle_img_idx] # rec_img = burst_imgs[middle_img_idx] - rec_res # -- compare with stacked targets -- rec_img = rescale_noisy_image(rec_img) # -- compute psnr -- loss = F.mse_loss(raw_img,rec_img,reduction='none').reshape(BS,-1) # loss = F.mse_loss(raw_img,burst_imgs[cfg.input_N//2]+0.5,reduction='none').reshape(BS,-1) loss = torch.mean(loss,1).detach().cpu().numpy() psnr = mse_to_psnr(loss) psnrs[batch_idx,:] = psnr total_psnr += np.mean(psnr) total_loss += np.mean(loss) # if (batch_idx % cfg.test_log_interval) == 0: # root = Path(f"{settings.ROOT_PATH}/output/n2n/offset_out_noise/rec_imgs/N{cfg.N}/e{epoch}") # if not root.exists(): root.mkdir(parents=True) # fn = root / Path(f"b{batch_idx}.png") # nrow = int(np.sqrt(cfg.batch_size)) # rec_img = rec_img.detach().cpu() # grid_imgs = tv_utils.make_grid(rec_img, padding=2, normalize=True, nrow=nrow) # plt.imshow(grid_imgs.permute(1,2,0)) # plt.savefig(fn) # plt.close('all') if (batch_idx % cfg.test_log_interval) == 0: print("[%d/%d] Running Test PSNR: %2.2f" % (batch_idx, len(test_loader), total_psnr / (batch_idx+1))) psnr_ave = np.mean(psnrs) psnr_std = np.std(psnrs) ave_loss = total_loss / len(test_loader) print("[N: %d] Testing: [psnr: %2.2f +/- %2.2f] [ave loss %2.3e]"%(cfg.N,psnr_ave,psnr_std,ave_loss)) return psnr_ave
def train_loop_offset(cfg, model, optimizer, criterion, train_loader, epoch, record_losses): model.train() model = model.to(cfg.device) N = cfg.N total_loss = 0 running_loss = 0 szm = ScaleZeroMean() blocksize = 128 unfold = torch.nn.Unfold(blocksize, 1, 0, blocksize) D = 5 * 10**3 if record_losses is None: record_losses = pd.DataFrame({ 'kpn': [], 'ot': [], 'psnr': [], 'psnr_std': [] }) # if cfg.N != 5: return switch = True for batch_idx, (burst_imgs, res_imgs, raw_img) in enumerate(train_loader): if batch_idx > D: break optimizer.zero_grad() model.zero_grad() # fig,ax = plt.subplots(figsize=(10,10)) # imgs = burst_imgs + 0.5 # imgs.clamp_(0.,1.) # raw_img = raw_img.expand(burst_imgs.shape) # print(imgs.shape,raw_img.shape) # all_img = torch.cat([imgs,raw_img],dim=1) # print(all_img.shape) # grids = [vutils.make_grid(all_img[i],nrow=16) for i in range(cfg.dynamic.frames)] # ims = [[ax.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in grids] # ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True) # Writer = animation.writers['ffmpeg'] # writer = Writer(fps=1, metadata=dict(artist='Me'), bitrate=1800) # ani.save(f"{settings.ROOT_PATH}/train_loop_voc.mp4", writer=writer) # print("I DID IT!") # return # -- reshaping of data -- # raw_img = raw_img.cuda(non_blocking=True) input_order = np.arange(cfg.N) # print("pre",input_order,cfg.blind,cfg.N) middle_img_idx = -1 if not cfg.input_with_middle_frame: middle = len(input_order) // 2 # print(middle) middle_img_idx = input_order[middle] # input_order = np.r_[input_order[:middle],input_order[middle+1:]] else: middle = len(input_order) // 2 input_order = np.arange(cfg.N) middle_img_idx = input_order[middle] # input_order = np.arange(cfg.N) # print("post",input_order,cfg.blind,cfg.N,middle_img_idx) N, BS, C, H, W = burst_imgs.shape burst_imgs = burst_imgs.cuda(non_blocking=True) middle_img = burst_imgs[middle_img_idx] # print(cfg.N,cfg.blind,[input_order[x] for x in range(cfg.input_N)]) # stacked_burst = torch.cat([burst_imgs[input_order[x]] for x in range(cfg.input_N)],dim=1) # print("stacked_burst",stacked_burst.shape) # print("burst_imgs.shape",burst_imgs.shape) # print("stacked_burst.shape",stacked_burst.shape) # -- add input noise -- burst_imgs_noisy = burst_imgs.clone() if cfg.input_noise: noise = np.random.rand() * cfg.input_noise_level if cfg.input_noise_middle_only: burst_imgs_noisy[middle_img_idx] = torch.normal( burst_imgs_noisy[middle_img_idx], noise) else: burst_imgs_noisy = torch.normal(burst_imgs_noisy, noise) # -- create inputs for kpn -- stacked_burst = torch.stack( [burst_imgs_noisy[input_order[x]] for x in range(cfg.input_N)], dim=1) cat_burst = torch.cat( [burst_imgs_noisy[input_order[x]] for x in range(cfg.input_N)], dim=1) # print(stacked_burst.shape) # print(cat_burst.shape) # -- extract target image -- if cfg.blind: t_img = burst_imgs[middle_img_idx] else: t_img = szm(raw_img.cuda(non_blocking=True)) # -- direct denoising -- rec_img_i, rec_img = model(cat_burst, stacked_burst) # rec_img = burst_imgs[middle_img_idx] - rec_res # -- compare with stacked burst -- # print(cfg.blind,t_img.min(),t_img.max(),t_img.mean()) # rec_img = rec_img.expand(t_img.shape) # loss = F.mse_loss(t_img,rec_img) # -- compute mse to optimize -- mse_loss = F.mse_loss(rec_img, t_img) # -- compute kpn loss to optimize -- kpn_losses = criterion(rec_img_i, rec_img, t_img, cfg.global_step) kpn_loss = np.sum(kpn_losses) # -- compute blockwise differences -- rec_img_i_bn = rearrange(rec_img_i, 'b n c h w -> (b n) c h w') r_middle_img = t_img.unsqueeze(1).repeat(1, N, 1, 1, 1) r_middle_img = rearrange(r_middle_img, 'b n c h w -> (b n) c h w') diffs = r_middle_img - rec_img_i_bn # diffs = rearrange(unfold(diffs),'(b n) (c i) r -> b n r (c i)',b=BS,c=3) # -- compute OT loss -- # mse_loss = torch.mean(torch.pow(diffs,2)) diffs = rearrange(diffs, '(b n) c h w -> b n (h w) c', n=N) ot_loss = 0 #skip_middle = i != N//2 and j != N//2 pairs = list(set([(i, j) for i in range(N) for j in range(N) if i < j])) P = len(pairs) S = 3 #P r_idx = npr.choice(range(P), S) for idx in r_idx: i, j = pairs[idx] if i >= j: continue # assert BS == 1, "batch size must be one right now." for b in range(BS): di, dj = diffs[b, i], diffs[b, j] M = torch.sum(torch.pow(di.unsqueeze(1) - dj, 2), dim=-1) ot_loss += sink_stabilized(M, 0.5) ot_loss /= S * BS # M = torch.mean(torch.pow(diffs.unsqueeze(1) - diffs,2),dim=2) # ot_loss = sink(M, 0.5) # -- compute stats for each block -- # mean_est = torch.mean(diffs, dim=(1,2,3), keepdim=True) # std_est = torch.pow( diffs - mean_est, 2) # # mse_loss = F.mse_loss(r_middle_img,rec_img_i_bn,reduction='none') # std_est = torch.flatten(torch.mean( std_est, dim=(1,2,3) )) # # dist_loss = torch.norm(std_est.unsqueeze(1) - std_est) # # -- flatten and compare each block stats -- # dist_loss = 0 # mean_est = torch.flatten(mean_est) # std_est = torch.flatten(std_est) # M = mean_est.shape[0] # for i in range(M): # for j in range(M): # if i >= j: continue # si,sj = std_est[i],std_est[j] # dist_loss += torch.abs(mean_est[i] - mean_est[j]) # dist_loss += torch.abs(si + sj - 2 * (si * sj)**0.5) # -- combine loss -- # print(kpn_loss.item(),10**3 * ot_loss.item(),ot_loss.item() / (1 + mse_loss.item())) # loss = kpn_loss + 10**4 * ot_loss / (1 + mse_loss.item()) alpha, beta = criterion.loss_anneal.alpha, criterion.loss_anneal.beta ot_coeff = 10 # loss = kpn_loss loss = kpn_loss + ot_coeff * ot_loss # / (1 + mse_loss.item()) # print(kpn_loss.item(), 10**4 * ot_loss.item() / (1 + mse_loss.item())) # loss = mse_loss + ot_loss / (1 + mse_loss.item()) # if batch_idx % 100 == 0 or switch: switch = not switch # if switch: # loss += kpn_loss# + ot_loss / (1 + kpn_loss.item()) # # loss = kpn_loss + ot_loss / (1 + kpn_loss.item()) # print(ot_loss.item(),mse_loss.item(),kpn_loss.item(),loss.item()) # -- update info -- running_loss += loss.item() total_loss += loss.item() # -- BP and optimize -- loss.backward() optimizer.step() if True: # -- compute mse for fun -- BS = raw_img.shape[0] raw_img = raw_img.cuda(non_blocking=True) mse_loss = F.mse_loss(raw_img, rec_img + 0.5, reduction='none').reshape(BS, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr = np.mean(mse_to_psnr(mse_loss)) psnr_std = np.std(mse_to_psnr(mse_loss)) record_losses = record_losses.append( { 'kpn': kpn_loss.item(), 'ot': ot_loss.item(), 'psnr': psnr, 'psnr_std': psnr_std }, ignore_index=True) running_loss /= cfg.log_interval if (batch_idx % cfg.log_interval) == 0 and batch_idx > 0: print("[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f" % (epoch, cfg.epochs, batch_idx, len(train_loader), running_loss, psnr, psnr_std)) running_loss = 0 cfg.global_step += 1 total_loss /= len(train_loader) return total_loss, record_losses
def train_loop(cfg, model, scheduler, train_loader, epoch, record_losses, writer): # -=-=-=-=-=-=-=-=-=-=- # # Setup for epoch # # -=-=-=-=-=-=-=-=-=-=- model.align_info.model.train() model.denoiser_info.model.train() model.unet_info.model.train() model.denoiser_info.model = model.denoiser_info.model.to(cfg.device) model.align_info.model = model.align_info.model.to(cfg.device) model.unet_info.model = model.unet_info.model.to(cfg.device) N = cfg.N total_loss = 0 running_loss = 0 szm = ScaleZeroMean() blocksize = 128 unfold = torch.nn.Unfold(blocksize, 1, 0, blocksize) use_record = False if record_losses is None: record_losses = pd.DataFrame({ 'burst': [], 'ave': [], 'ot': [], 'psnr': [], 'psnr_std': [] }) noise_type = cfg.noise_params.ntype # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Init Record Keeping # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- align_mse_losses, align_mse_count = 0, 0 rec_mse_losses, rec_mse_count = 0, 0 rec_ot_losses, rec_ot_count = 0, 0 running_loss, total_loss = 0, 0 dynamics_acc, dynamics_count = 0, 0 write_examples = False write_examples_iter = 200 noise_level = cfg.noise_params['g']['stddev'] # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Load Pre-Simulated Random Numbers # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if cfg.use_kindex_lmdb: kindex_ds = kIndexPermLMDB(cfg.batch_size, cfg.N) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Dataset Augmentation # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- transforms = [tvF.vflip, tvF.hflip, tvF.rotate] aug = RandomChoice(transforms) def apply_transformations(burst, gt_img): N, B = burst.shape[:2] gt_img_rs = rearrange(gt_img, 'b c h w -> 1 b c h w') all_images = torch.cat([gt_img_rs, burst], dim=0) all_images = rearrange(all_images, 'n b c h w -> (n b) c h w') tv_utils.save_image(all_images, 'aug_original.png', nrow=N + 1, normalize=True) aug_images = aug(all_images) tv_utils.save_image(aug_images, 'aug_augmented.png', nrow=N + 1, normalize=True) aug_images = rearrange(aug_images, '(n b) c h w -> n b c h w', b=B) aug_gt_img = aug_images[0] aug_burst = aug_images[1:] return aug_burst, aug_gt_img # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Half Precision # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # model.align_info.model.half() # model.denoiser_info.model.half() # model.unet_info.model.half() # models = [model.align_info.model, # model.denoiser_info.model, # model.unet_info.model] # for model_l in models: # model_l.half() # for layer in model_l.modules(): # if isinstance(layer, torch.nn.BatchNorm2d): # layer.float() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Init Loss Functions # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- alignmentLossMSE = BurstRecLoss() denoiseLossMSE = BurstRecLoss(alpha=cfg.kpn_burst_alpha, gradient_L1=~cfg.supervised) # denoiseLossOT = BurstResidualLoss() entropyLoss = EntropyLoss() # -=-=-=-=-=-=-=-=-=-=-=-=- # # Add hooks for epoch # # -=-=-=-=-=-=-=-=-=-=-=-=- align_hook = AlignmentFilterHooks(cfg.N) align_hooks = [] for kpn_module in model.align_info.model.children(): for name, layer in kpn_module.named_children(): if name == "filter_cls": align_hook_handle = layer.register_forward_hook(align_hook) align_hooks.append(align_hook_handle) # -=-=-=-=-=-=-=-=-=-=- # # Noise2Noise # # -=-=-=-=-=-=-=-=-=-=- noise_xform = get_noise_transform(cfg.noise_params, use_to_tensor=False) # -=-=-=-=-=-=-=-=-=-=- # # Final Configs # # -=-=-=-=-=-=-=-=-=-=- use_timer = False one = torch.FloatTensor([1.]).to(cfg.device) switch = True if use_timer: data_clock = Timer() clock = Timer() ds_size = len(train_loader) small_ds = ds_size < 500 steps_per_epoch = ds_size if not small_ds else 500 write_examples_iter = steps_per_epoch // 3 all_filters = [] # -=-=-=-=-=-=-=-=-=-=- # # Start Epoch # # -=-=-=-=-=-=-=-=-=-=- dynamics_acc_i = -1. if cfg.use_seed: init = torch.initial_seed() torch.manual_seed(cfg.seed + 1 + epoch + init) train_iter = iter(train_loader) for batch_idx in range(steps_per_epoch): # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Setting up for Iteration # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- setup iteration timer -- if use_timer: data_clock.tic() clock.tic() # -- grab data batch -- if small_ds and batch_idx >= ds_size: if cfg.use_seed: init = torch.initial_seed() torch.manual_seed(cfg.seed + 1 + epoch + init) train_iter = iter(train_loader) # reset if too big sample = next(train_iter) burst, raw_img, motion = sample['burst'], sample['clean'], sample[ 'flow'] raw_img_iid = sample['iid'] raw_img_iid = raw_img_iid.cuda(non_blocking=True) burst = burst.cuda(non_blocking=True) # -- handle possibly cached simulated bursts -- if 'sim_burst' in sample: sim_burst = rearrange(sample['sim_burst'], 'b n k c h w -> n b k c h w') else: sim_burst = None non_sim_method = cfg.n2n or cfg.supervised if sim_burst is None and not (non_sim_method or cfg.abps): if sim_burst is None: if cfg.use_kindex_lmdb: kindex = kindex_ds[batch_idx].cuda(non_blocking=True) else: kindex = None query = burst[[N // 2]] database = torch.cat([burst[:N // 2], burst[N // 2 + 1:]]) sim_burst = compute_similar_bursts( cfg, query, database, cfg.sim_K, noise_level / 255., patchsize=cfg.sim_patchsize, shuffle_k=cfg.sim_shuffleK, kindex=kindex, only_middle=cfg.sim_only_middle, search_method=cfg.sim_method, db_level="frame") if (sim_burst is None) and cfg.abps: # scores,aligned = abp_search(cfg,burst) # scores,aligned = lpas_search(cfg,burst,motion) if cfg.lpas_method == "spoof": mtype = "global" acc = cfg.optical_flow_acc scores, aligned = lpas_spoof(burst, motion, cfg.nblocks, mtype, acc) else: ref_frame = (cfg.nframes + 1) // 2 nblocks = cfg.nblocks method = cfg.lpas_method scores, aligned, dacc = lpas_search(burst, ref_frame, nblocks, motion, method) dynamics_acc_i = dacc # scores,aligned = lpas_spoof(motion,accuracy=cfg.optical_flow_acc) # shuffled = shuffle_aligned_pixels_noncenter(aligned,cfg.nframes) nsims = cfg.nframes sim_aligned = create_sim_from_aligned(burst, aligned, nsims) burst_s = rearrange(burst, 't b c h w -> t b 1 c h w') sim_burst = torch.cat([burst_s, sim_aligned], dim=2) # print("sim_burst.shape",sim_burst.shape) # raw_img = raw_img.cuda(non_blocking=True)-0.5 # # print(np.sqrt(cfg.noise_params['g']['stddev'])) # print(motion) # tiled = tile_across_blocks(burst[[cfg.nframes//2]],cfg.nblocks) # rep_burst = repeat(burst,'t b c h w -> t b g c h w',g=tiled.shape[2]) # for t in range(cfg.nframes): # save_image(tiled[0] - rep_burst[t],f"tiled_sub_burst_{t}.png") # save_image(aligned,"aligned.png") # print(aligned.shape) # # save_image(aligned[0] - aligned[cfg.nframes//2],"aligned_0.png") # # save_image(aligned[2] - aligned[cfg.nframes//2],"aligned_2.png") # M = (1+cfg.dynamic.ppf)*cfg.nframes # fs = cfg.dynamic.frame_size - M # fs = cfg.frame_size # cropped = crop_center_patch([burst,aligned,raw_img],cfg.nframes,cfg.frame_size) # burst,aligned,raw_img = cropped[0],cropped[1],cropped[2] # print(aligned.shape) # for t in range(cfg.nframes+1): # diff_t = aligned[t] - raw_img # spacing = cfg.nframes+1 # diff_t = crop_center_patch([diff_t],spacing,cfg.frame_size)[0] # print_tensor_stats(f"diff_aligned_{t}",diff_t) # save_image(diff_t,f"diff_aligned_{t}.png") # if t < cfg.nframes: # dt = aligned[t+1]-aligned[t] # dt = crop_center_patch([dt],spacing,cfg.frame_size)[0] # save_image(dt,f"dt_aligned_{t+1}m{t}.png") # save_image(aligned[t],f"aligned_{t}.png") # diff_t = tvF.crop(aligned[t] - raw_img,cfg.nframes,cfg.nframes,fs,fs) # print_tensor_stats(f"diff_aligned_{t}",diff_t) # save_image(burst,"burst.png") # save_image(burst[0] - burst[cfg.nframes//2],"burst_0.png") # save_image(burst[2] - burst[cfg.nframes//2],"burst_2.png") # exit() # print(sample['burst'].shape,sample['res'].shape) # b_clean = sample['burst'] - sample['res'] # scores,ave,t_aligned = test_abp_global_search(cfg,b_clean,noisy_img=burst) # burstBN = rearrange(burst,'n b c h w -> (b n) c h w') # tv_utils.save_image(burstBN,"abps_burst.png",normalize=True) # alignedBN = rearrange(aligned,'n b c h w -> (b n) c h w') # tv_utils.save_image(alignedBN,"abps_aligned.png",normalize=True) # rep_burst = burst[[N//2]].repeat(N,1,1,1,1) # deltaBN = rearrange(aligned - rep_burst,'n b c h w -> (b n) c h w') # tv_utils.save_image(deltaBN,"abps_delta.png",normalize=True) # b_clean_rep = b_clean[[N//2]].repeat(N,1,1,1,1) # tdeltaBN = rearrange(t_aligned - b_clean_rep.cpu(),'n b c h w -> (b n) c h w') # tv_utils.save_image(tdeltaBN,"abps_tdelta.png",normalize=True) if non_sim_method: sim_burst = burst.unsqueeze(2).repeat(1, 1, 2, 1, 1, 1) else: sim_burst = sim_burst.cuda(non_blocking=True) if use_timer: data_clock.toc() # -- to cuda -- burst = burst.cuda(non_blocking=True) raw_zm_img = szm(raw_img.cuda(non_blocking=True)) # anscombe.test(cfg,burst_og) # save_image(burst,f"burst_{batch_idx}_{cfg.n2n}.png") # -- crop images -- if True: #cfg.abps or cfg.abps_inputs: images = [burst, sim_burst, raw_img, raw_img_iid] spacing = burst.shape[0] # we use frames as spacing cropped = crop_center_patch(images, spacing, cfg.frame_size) burst, sim_burst = cropped[0], cropped[1] raw_img, raw_img_iid = cropped[2], cropped[3] if cfg.abps or cfg.abps_inputs: aligned = crop_center_patch([aligned], spacing, cfg.frame_size)[0] # print_tensor_stats("d-eq?",burst[-1] - aligned[-1]) burst = burst[:cfg.nframes] # last frame is target # -- getting shapes of data -- N, B, C, H, W = burst.shape burst_og = burst.clone() # -- shuffle over Simulated Samples -- k_ins, k_outs = create_k_grid(sim_burst, shuffle=True) k_ins, k_outs = [k_ins[0]], [k_outs[0]] # k_ins,k_outs = create_k_grid_v3(sim_burst) for k_in, k_out in zip(k_ins, k_outs): if k_in == k_out: continue # -- zero gradients; ready 2 go -- model.align_info.model.zero_grad() model.align_info.optim.zero_grad() model.denoiser_info.model.zero_grad() model.denoiser_info.optim.zero_grad() model.unet_info.model.zero_grad() model.unet_info.optim.zero_grad() # -- compute input/output data -- if cfg.sim_only_middle and (not cfg.abps): # sim_burst.shape == T,B,K,C,H,W midi = 0 if sim_burst.shape[0] == 1 else N // 2 left_burst, right_burst = burst[:N // 2], burst[N // 2 + 1:] cat_burst = [ left_burst, sim_burst[[midi], :, k_in], right_burst ] burst = torch.cat(cat_burst, dim=0) mid_img = sim_burst[midi, :, k_out] elif cfg.abps and (not cfg.abps_inputs): # -- v1 -- mid_img = aligned[-1] # -- v2 -- # left_aligned,right_aligned = aligned[:N//2],aligned[N//2+1:] # nc_aligned = torch.cat([left_aligned,right_aligned],dim=0) # shuf = shuffle_aligned_pixels(nc_aligned,cfg.nframes) # mid_img = shuf[1] # ---- v3 ---- # shuf = shuffle_aligned_pixels(aligned) # shuf = aligned[[N//2,0]] # midi = 0 if sim_burst.shape[0] == 1 else N//2 # left_burst,right_burst = burst[:N//2],burst[N//2+1:] # burst = torch.cat([left_burst,shuf[[0]],right_burst],dim=0) # nc_burst = torch.cat([left_burst,right_burst],dim=0) # shuf = shuffle_aligned_pixels(aligned) # ---- v4 ---- # nc_shuf = shuffle_aligned_pixels(nc_aligned) # mid_img = nc_shuf[0] # pick = npr.randint(0,2,size=(1,))[0] # mid_img = nc_aligned[pick] # mid_img = shuf[1] # save_image(shuf,"shuf.png") # print(shuf.shape) # diff = raw_img.cuda(non_blocking=True) - aligned[0] # mean = torch.mean(diff).item() # std = torch.std(diff).item() # print(mean,std) # -- v1 -- # burst = burst # notMid = sample_not_mid(N) # mid_img = aligned[notMid] elif cfg.abps_inputs: burst = aligned.clone() burst_og = aligned.clone() mid_img = shuffle_aligned_pixels(burst, cfg.nframes)[0] else: burst = sim_burst[:, :, k_in] mid_img = sim_burst[N // 2, :, k_out] # mid_img = sim_burst[N//2,:] # print(burst.shape,mid_img.shape) # print(F.mse_loss(burst,mid_img).item()) if cfg.supervised: gt_img = get_nmlz_tgt_img(cfg, raw_img).cuda(non_blocking=True) elif cfg.n2n: gt_img = raw_img_iid #noise_xform(raw_img).cuda(non_blocking=True) else: gt_img = mid_img # another = noise_xform(raw_img).cuda(non_blocking=True) # print_tensor_stats("a-iid?",raw_img_iid.cuda() - raw_img.cuda()) # print_tensor_stats("b-iid?",mid_img.cuda() - raw_img.cuda()) # print_tensor_stats("c-iid?",mid_img.cuda() - another) # print_tensor_stats("d-iid?",raw_img_iid.cuda() - another) # print_tensor_stats("e-iid?",mid_img.cuda() - raw_img_iid.cuda()) # for bt in range(cfg.nframes): # tiled = tile_across_blocks(burst[[bt]],cfg.nblocks) # rep_burst = repeat(burst,'t b c h w -> t b g c h w',g=tiled.shape[2]) # for t in range(cfg.nframes): # save_image(tiled[0] - rep_burst[t],f"tiled_{bt}_sub_burst_{t}.png") # print_tensor_stats(f"delta_{bt}_{t}",tiled[0,:,4] - burst[t]) # raw_img = raw_img.cuda(non_blocking=True) - 0.5 # print_tensor_stats("gt_img - raw",gt_img - raw_img) # # save_image(gt_img,"gt.png") # # save_image(raw,"raw.png") # save_image(gt_img - raw_img,"gt_sub_raw.png") # print_tensor_stats("burst[N//2] - raw",burst[N//2] - raw_img) # save_image(burst[N//2] - raw_img,"burst_sub_raw.png") # print_tensor_stats("burst[N//2] - gt_img",burst[N//2] - gt_img) # save_image(burst[N//2] - gt_img,"burst_sub_gt.png") # print_tensor_stats("aligned[N//2] - raw",aligned[N//2] - raw_img) # save_image(aligned[N//2] - raw_img,"aligned_sub_raw.png") # print_tensor_stats("aligned[N//2] - burst[N//2]", # aligned[N//2] - burst[N//2]) # save_image(aligned[N//2] - burst[N//2],"aligned_sub_burst.png") # gt_img = torch.normal(raw_zm_img,noise_level/255.) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Dataset Augmentation # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # burst,gt_img = apply_transformations(burst,gt_img) # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Formatting Images for FP # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- stacked_burst = rearrange(burst, 'n b c h w -> b n c h w') cat_burst = rearrange(burst, 'n b c h w -> (b n) c h w') # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Foward Pass # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- outputs = model(burst) m_aligned, m_aligned_ave, denoised, denoised_ave = outputs[:4] aligned_filters, denoised_filters = outputs[4:] # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Decrease Entropy within a Kernel # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- filters_entropy = 0 filters_entropy_coeff = 0. # 1000. all_filters = [] L = len(align_hook.filters) iter_filters = align_hook.filters if L > 0 else [aligned_filters] for filters in iter_filters: f_shape = 'b n k2 c h w -> (b n c h w) k2' filters_shaped = rearrange(filters, f_shape) filters_entropy += one #entropyLoss(filters_shaped) all_filters.append(filters) if L > 0: filters_entropy /= L all_filters = torch.stack(all_filters, dim=1) align_hook.clear() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Reconstruction Losses (MSE) # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- losses = [F.mse_loss(denoised_ave, gt_img)] # losses = denoiseLossMSE(denoised,denoised_ave,gt_img,cfg.global_step) # losses = [ one, one ] # ave_loss,burst_loss = [loss.item() for loss in losses] rec_mse = np.sum(losses) # rec_mse = F.mse_loss(denoised_ave,gt_img) rec_mse_coeff = 1. # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Reconstruction Losses (Distribution) # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- gt_img_rep = gt_img.unsqueeze(1).repeat(1, denoised.shape[1], 1, 1, 1) residuals = denoised - gt_img_rep rec_ot = torch.FloatTensor([0.]).to(cfg.device) # rec_ot = kl_gaussian_bp(residuals,noise_level,flip=True) # rec_ot = kl_gaussian_bp_patches(residuals,noise_level,flip=True,patchsize=16) if torch.any(torch.isnan(rec_ot)): rec_ot = torch.FloatTensor([0.]).to(cfg.device) if torch.any(torch.isinf(rec_ot)): rec_ot = torch.FloatTensor([0.]).to(cfg.device) rec_ot_coeff = 0. # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Final Losses # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- rec_loss = rec_mse_coeff * rec_mse + rec_ot_coeff * rec_ot final_loss = rec_loss # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Record Keeping # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- reconstruction MSE -- rec_mse_losses += rec_mse.item() rec_mse_count += 1 # -- reconstruction Dist. -- rec_ot_losses += rec_ot.item() rec_ot_count += 1 # -- dynamic acc - dynamics_acc += dynamics_acc_i dynamics_count += 1 # -- total loss -- running_loss += final_loss.item() total_loss += final_loss.item() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Gradients & Backpropogration # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # -- compute the gradients! -- if cfg.use_seed: torch.set_deterministic(False) final_loss.backward() if cfg.use_seed: torch.set_deterministic(True) # -- backprop now. -- model.align_info.optim.step() model.denoiser_info.optim.step() model.unet_info.optim.step() scheduler.step() # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # # Printing to Stdout # # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if (batch_idx % cfg.log_interval) == 0 and batch_idx > 0: # -- recompute model output for original images -- outputs = model(burst_og) m_aligned, m_aligned_ave, denoised, denoised_ave = outputs[:4] aligned_filters, denoised_filters = outputs[4:] # -- compute mse for fun -- B = raw_img.shape[0] raw_img = raw_img.cuda(non_blocking=True) raw_img = get_nmlz_tgt_img(cfg, raw_img) # -- psnr for [average of aligned frames] -- mse_loss = F.mse_loss(raw_img, m_aligned_ave, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_aligned_ave = np.mean(mse_to_psnr(mse_loss)) psnr_aligned_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [average of input, misaligned frames] -- mis_ave = torch.mean(burst_og, dim=0) if noise_type == "qis": mis_ave = quantize_img(cfg, mis_ave) mse_loss = F.mse_loss(raw_img, mis_ave, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_misaligned_ave = np.mean(mse_to_psnr(mse_loss)) psnr_misaligned_std = np.std(mse_to_psnr(mse_loss)) # tv_utils.save_image(raw_img,"raw.png",nrow=1,normalize=True,range=(-0.5,1.25)) # tv_utils.save_image(mis_ave,"mis.png",nrow=1,normalize=True,range=(-0.5,1.25)) # -- psnr for [bm3d] -- mid_img_og = burst[N // 2] bm3d_nb_psnrs = [] M = 4 if B > 4 else B for b in range(M): bm3d_rec = bm3d.bm3d(mid_img_og[b].cpu().transpose(0, 2) + 0.5, sigma_psd=noise_level / 255, stage_arg=bm3d.BM3DStages.ALL_STAGES) bm3d_rec = torch.FloatTensor(bm3d_rec).transpose(0, 2) # maybe an issue here b_loss = F.mse_loss(raw_img[b].cpu(), bm3d_rec, reduction='none').reshape(1, -1) b_loss = torch.mean(b_loss, 1).detach().cpu().numpy() bm3d_nb_psnr = np.mean(mse_to_psnr(b_loss)) bm3d_nb_psnrs.append(bm3d_nb_psnr) bm3d_nb_ave = np.mean(bm3d_nb_psnrs) bm3d_nb_std = np.std(bm3d_nb_psnrs) # -- psnr for input averaged frames -- # burst_ave = torch.mean(burst_og,dim=0) # mse_loss = F.mse_loss(raw_img,burst_ave,reduction='none').reshape(B,-1) # mse_loss = torch.mean(mse_loss,1).detach().cpu().numpy() # psnr_input_ave = np.mean(mse_to_psnr(mse_loss)) # psnr_input_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for aligned + denoised -- R = denoised.shape[1] raw_img_repN = raw_img.unsqueeze(1).repeat(1, R, 1, 1, 1) # if noise_type == "qis": denoised = quantize_img(cfg,denoised) # save_image(denoised_ave,"denoised_ave.png") # save_image(denoised,"denoised.png") mse_loss = F.mse_loss(raw_img_repN, denoised, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr_denoised_ave = np.mean(mse_to_psnr(mse_loss)) psnr_denoised_std = np.std(mse_to_psnr(mse_loss)) # -- psnr for [model output image] -- mse_loss = F.mse_loss(raw_img, denoised_ave, reduction='none').reshape(B, -1) mse_loss = torch.mean(mse_loss, 1).detach().cpu().numpy() psnr = np.mean(mse_to_psnr(mse_loss)) psnr_std = np.std(mse_to_psnr(mse_loss)) # -- update losses -- running_loss /= cfg.log_interval # -- reconstruction MSE -- rec_mse_ave = rec_mse_losses / rec_mse_count rec_mse_losses, rec_mse_count = 0, 0 # -- reconstruction Dist. -- rec_ot_ave = rec_ot_losses / rec_ot_count rec_ot_losses, rec_ot_count = 0, 0 # -- ave dynamic acc -- ave_dyn_acc = dynamics_acc / dynamics_count * 100. dynamics_acc, dynamics_count = 0, 0 # -- write record -- if use_record: info = { 'burst': burst_loss, 'ave': ave_loss, 'ot': rec_ot_ave, 'psnr': psnr, 'psnr_std': psnr_std } record_losses = record_losses.append(info, ignore_index=True) # -- write to stdout -- write_info = (epoch, cfg.epochs, batch_idx, steps_per_epoch, running_loss, psnr, psnr_std, psnr_denoised_ave, psnr_denoised_std, psnr_aligned_ave, psnr_aligned_std, psnr_misaligned_ave, psnr_misaligned_std, bm3d_nb_ave, bm3d_nb_std, rec_mse_ave, ave_dyn_acc) #rec_ot_ave) #print("[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f [den]: %2.2f +/- %2.2f [al]: %2.2f +/- %2.2f [mis]: %2.2f +/- %2.2f [bm3d]: %2.2f +/- %2.2f [r-mse]: %.2e [r-ot]: %.2e" % write_info) print( "[%d/%d][%d/%d]: %2.3e [PSNR]: %2.2f +/- %2.2f [den]: %2.2f +/- %2.2f [al]: %2.2f +/- %2.2f [mis]: %2.2f +/- %2.2f [bm3d]: %2.2f +/- %2.2f [r-mse]: %.2e [dyn]: %.2e" % write_info, flush=True) # -- write to summary writer -- if writer: writer.add_scalar('train/running-loss', running_loss, cfg.global_step) writer.add_scalars('train/model-psnr', { 'ave': psnr, 'std': psnr_std }, cfg.global_step) writer.add_scalars('train/dn-frame-psnr', { 'ave': psnr_denoised_ave, 'std': psnr_denoised_std }, cfg.global_step) # -- reset loss -- running_loss = 0 # -- write examples -- if write_examples and (batch_idx % write_examples_iter) == 0 and ( batch_idx > 0 or cfg.global_step == 0): write_input_output(cfg, model, stacked_burst, aligned, denoised, all_filters, motion) if use_timer: clock.toc() if use_timer: print("data_clock", data_clock.average_time) print("clock", clock.average_time) cfg.global_step += 1 # -- remove hooks -- for hook in align_hooks: hook.remove() total_loss /= len(train_loader) return total_loss, record_losses