Пример #1
0
# import datasets.MSRII
import numpy as np

DATA_LIST = ['UCF-Sports', 'JHMDB', 'UCF101', 'MSRII']
MOD_LIST = ['RGB', 'FLOW']
LEN_LIST = ['1', '5', '10']
SPLIT_LIST = ['0', '1', '2']
for dataset in DATA_LIST:
    for mod in MOD_LIST:
        for lens in LEN_LIST:
            for split in SPLIT_LIST:
                name = '{}_{}_{}_split_{}'.format(dataset, mod, lens, split)
                image_set = name
                if dataset is 'UCF-Sports':
                    __sets[name] = (lambda split=image_set, phase='TRAIN':
                                    ucfsports(split, phase))
                elif dataset is 'JHMDB':
                    __sets[name] = (lambda split=image_set, phase='TRAIN':
                                    JHMDB(split, phase))
                elif dataset is 'UCF101':
                    __sets[name] = (lambda split=image_set, phase='TRAIN':
                                    UCF101(split, phase))
                # elif dataset is 'MSRII':
                #     __sets[name] = (lambda split=split, datapath='/home/lear/xpeng/data/MSR_II/pweinzaeMSR2/frames': #frames #features/fat2/motion_cnn_proposals/jpeg0
                #             datasets.MSRII(split, datapath))


def get_imdb(name):
    """Get an imdb (image database) by name."""
    if not __sets.has_key(name):
        raise KeyError('Unknown dataset: {}'.format(name))
Пример #2
0
if __name__ == '__main__':
    args = parse_args()
    if not os.path.isfile(args.net):
        raise IOError(('{:s} not found.').format(args.net))

    cfg.TEST.HAS_RPN = True
    cfg.TEST.SCALES = [600]

    MOD = args.imdb.split('_')[1]
    LEN = int(args.imdb.split('_')[2])
    if MOD == 'FLOW' and LEN == 1:
        cfg.PIXEL_MEANS = np.array([[[128., 128., 128.]]])
    if MOD == 'FLOW' and LEN == 5:
        cfg.PIXEL_MEANS = np.array([[[128., 128., 128.] * 5]])

    ucfsports_test = ucfsports(args.imdb, 'TEST')
    roidb = ucfsports_test.roidb

    if not os.path.exists(args.savepath):
        if args.cpu_mode:
            caffe.set_mode_cpu()
        else:
            caffe.set_mode_gpu()
            caffe.set_device(args.gpu_id)
        caffe_net = caffe.Net(args.proto, args.net, caffe.TEST)

        pred_all_dets = {}
        n_fr = len(ucfsports_test.image_index)
        for i in range(n_fr):
            image_name = ucfsports_test.image_index[i]
            image_path = os.path.join(ucfsports_test._data_path, image_name)