def __init__(self, mode, quality='fine', joint_transform_list=None, img_transform=None, label_transform=None, eval_folder=None): super(Loader, self).__init__(quality=quality, mode=mode, joint_transform_list=joint_transform_list, img_transform=img_transform, label_transform=label_transform) ###################################################################### # Cityscapes-specific stuff: ###################################################################### self.root = cfg.DATASET.CITYSCAPES_DARK_DIR self.id_to_trainid = cityscapes_labels.label2trainid self.trainid_to_name = cityscapes_labels.trainId2name self.fill_colormap() img_ext = 'jpg' mask_ext = '.png' img_root = path.join(self.root, 'leftImg8bit') mask_root = path.join(self.root, 'gtFine') if mode == 'folder': self.all_imgs = make_dataset_folder(eval_folder) else: self.fine_cities = cities_cv_split(self.root, mode, cfg.DATASET.CV) self.all_imgs = self.find_cityscapes_images( self.fine_cities, img_root, mask_root, img_ext, mask_ext) logx.msg(f'cn num_classes {self.num_classes}') self.fine_centroids = uniform.build_centroids(self.all_imgs, self.num_classes, self.train, cv=cfg.DATASET.CV, id2trainid=self.id_to_trainid) self.centroids = self.fine_centroids if cfg.DATASET.COARSE_BOOST_CLASSES and mode == 'train': self.coarse_cities = coarse_cities(self.root) img_root = path.join(self.root, 'leftImg8bit_trainextra/leftImg8bit') mask_root = path.join(self.root, 'gtCoarse', 'gtCoarse') self.coarse_imgs = self.find_cityscapes_images( self.coarse_cities, img_root, mask_root, img_ext, mask_ext, fine_coarse='gtCoarse') if cfg.DATASET.CLASS_UNIFORM_PCT: custom_coarse = (cfg.DATASET.CUSTOM_COARSE_PROB is not None) self.coarse_centroids = uniform.build_centroids( self.coarse_imgs, self.num_classes, self.train, coarse=(not custom_coarse), custom_coarse=custom_coarse, id2trainid=self.id_to_trainid) for cid in cfg.DATASET.COARSE_BOOST_CLASSES: self.centroids[cid].extend(self.coarse_centroids[cid]) else: self.all_imgs.extend(self.coarse_imgs) self.build_epoch()
def __init__(self, mode, quality='semantic', joint_transform_list=None, img_transform=None, label_transform=None, eval_folder=None): super(Loader, self).__init__(quality=quality, mode=mode, joint_transform_list=joint_transform_list, img_transform=img_transform, label_transform=label_transform) root = cfg.DATASET.CITYSURFACES_DIR self.id_to_trainid = label2trainid self.trainid_to_name = trainId2name self.fill_colormap() ###################################################################### # Assemble image lists ###################################################################### if mode == 'folder': img_ext = 'png' mask_ext = 'png' img_root = os.path.join(root, 'val', 'images') mask_root = os.path.join(root, 'val', 'annotations') self.all_imgs = self.find_images(img_root, mask_root, img_ext, mask_ext) elif mode == 'test': self.all_imgs = make_dataset_folder(eval_folder, test_mode=True) else: splits = {'train': 'train', 'val': 'val', 'test': 'tests'} split_name = splits[mode] img_ext = 'png' mask_ext = 'png' img_root = os.path.join(root, split_name, 'images') mask_root = os.path.join(root, split_name, 'annotations') self.all_imgs = self.find_images(img_root, mask_root, img_ext, mask_ext) logx.msg('all imgs {}'.format(len(self.all_imgs))) self.fine_centroids = uniform.build_centroids( self.all_imgs, self.num_classes, self.train, cv=cfg.DATASET.CV, id2trainid=self.id_to_trainid) self.centroids = self.fine_centroids self.build_epoch()
def __init__(self, mode, quality='semantic', joint_transform_list=None, img_transform=None, label_transform=None, eval_folder=None): super(Loader, self).__init__(quality=quality, mode=mode, joint_transform_list=joint_transform_list, img_transform=img_transform, label_transform=label_transform) root = cfg.DATASET.VAIHINGEN_DIR self.mode = mode self.fill_colormap() ###################################################################### # Assemble image lists ###################################################################### if mode == 'folder': self.all_imgs = make_dataset_folder(eval_folder) else: splits = { 'train': 'training', 'val': 'validation', 'trainval': 'trainval', 'test': 'testing' } split_name = splits[mode] #img_ext = 'jpg' #mask_ext = 'png' #img_root = os.path.join(root, split_name, 'images') #mask_root = os.path.join(root, split_name, 'labels') if mode is 'test': self.all_imgs = make_dataset(root, quality, mode) else: self.all_imgs = make_dataset(root, quality, mode) logx.msg('all imgs {}'.format(len(self.all_imgs))) self.centroids = uniform.build_centroids(self.all_imgs, self.num_classes, self.train, cv=cfg.DATASET.CV) self.build_epoch()
def __init__(self, mode, quality='fine', joint_transform_list=None, img_transform=None, label_transform=None, eval_folder=None): super(Loader, self).__init__(quality=quality, mode=mode, joint_transform_list=joint_transform_list, img_transform=img_transform, label_transform=label_transform) root = cfg.DATASET.KITTI_DIR ###################################################################### # Assemble image lists ###################################################################### if mode == 'folder': self.all_imgs = make_dataset_folder(eval_folder) else: splits = { 'train': 'training', 'val': 'training', 'test': 'training' } split_name = splits[mode] img_ext = 'png' mask_ext = 'png' img_root = os.path.join(root, split_name, 'image_2') mask_root = os.path.join(root, split_name, 'semantic_rgb') self.all_imgs = self.find_images(img_root, mask_root, img_ext, mask_ext) import ipdb ipdb.set_trace() self.fill_colormap() logx.msg('all imgs {}'.format(len(self.all_imgs))) self.centroids = uniform.build_centroids(self.all_imgs, self.num_classes, self.train, cv=cfg.DATASET.CV) self.build_epoch()
def __init__(self, mode, quality='semantic', joint_transform_list=None, img_transform=None, label_transform=None, eval_folder=None): super(Loader, self).__init__(quality=quality, mode=mode, joint_transform_list=joint_transform_list, img_transform=img_transform, label_transform=label_transform) root = cfg.DATASET.MAPILLARY_DIR config_fn = os.path.join(root, 'config.json') self.fill_colormap_and_names(config_fn) ###################################################################### # Assemble image lists ###################################################################### if mode == 'folder': self.all_imgs = make_dataset_folder(eval_folder) else: splits = { 'train': 'training', 'val': 'validation', 'test': 'testing' } split_name = splits[mode] img_ext = 'jpg' mask_ext = 'png' img_root = os.path.join(root, split_name, 'images') mask_root = os.path.join(root, split_name, 'labels') self.all_imgs = self.find_images(img_root, mask_root, img_ext, mask_ext) logx.msg('all imgs {}'.format(len(self.all_imgs))) self.centroids = uniform.build_centroids(self.all_imgs, self.num_classes, self.train, cv=cfg.DATASET.CV) self.build_epoch()