__sets[name] = (lambda split=split, year=year: pascal_voc( split, year, use_diff=True)) # # Set up coco_2014_<split> # for year in ['2014']: # for split in ['train', 'val', 'minival', 'valminusminival', 'trainval']: # name = 'coco_{}_{}'.format(year, split) # __sets[name] = (lambda split=split, year=year: coco(split, year)) # # # Set up coco_2015_<split> # for year in ['2015']: # for split in ['test', 'test-dev']: # name = 'coco_{}_{}'.format(year, split) # __sets[name] = (lambda split=split, year=year: coco(split, year)) for split in ['train', 'val', 'test']: name = 'visual_genome_{}'.format(split) __sets[name] = (lambda split=split: visual_genome(split, use_diff=True)) def get_imdb(name): """Get an imdb (image database) by name.""" if name not in __sets: raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() def list_imdbs(): """List all registered imdbs.""" return list(__sets.keys())
# Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Factory method for easily getting imdbs by name.""" __sets = {} from datasets.visual_genome import visual_genome import numpy as np # Set up visual_genome_<split> using rpn mode for version in ['1.0', '1.2']: for split in ['train', 'val', 'test']: name = 'vg_{}_{}'.format(version, split) __sets[name] = ( lambda split=split, version=version: visual_genome(split, version)) def get_imdb(name): """Get an imdb (image database) by name.""" if not __sets.has_key(name): raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() def list_imdbs(): """List all registered imdbs.""" return __sets.keys()
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Factory method for easily getting imdbs by name.""" __sets = {} from datasets.visual_genome import visual_genome import numpy as np # Set up visual_genome_<split> using rpn mode for version in ['1.0','1.2']: for split in ['train', 'val', 'test']: name = 'vg_{}_{}'.format(version, split) __sets[name] = (lambda split=split, version=version: visual_genome(split,version)) def get_imdb(name): """Get an imdb (image database) by name.""" if not __sets.has_key(name): raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() def list_imdbs(): """List all registered imdbs.""" return __sets.keys()
for categories in categories_lists: for split in ['train','val']: train_dir = './data/visual_genome/' + categories + '_train' val_dir = './data/visual_genome/' + categories + '_val' train_list, val_list = vg_instance.train_val_splitting(0.7, eval(categories)) if not os.path.exists(train_dir): os.system('mkdir ' + train_dir) for f in train_list: os.system('cp ' + vg_path + '/images/' + str(f) + '.jpg ' + train_dir) if not os.path.exists(val_dir): os.system('mkdir ' + val_dir) for f in val_list: os.system('cp ' + vg_path + '/images/' + str(f) + '.jpg ' + val_dir) name = 'visual_genome_{}_{}'.format(categories,split) __sets[name] = (lambda split=split, categories=categories: visual_genome(categories, eval(categories), split)) def get_imdb(name): """Get an imdb (image database) by name.""" if name not in __sets: raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() def list_imdbs(): """List all registered imdbs.""" return list(__sets.keys())
name = 'coco_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: coco(split, year)) # Set up coco_2015_<split> for year in ['2015']: for split in ['test', 'test-dev']: name = 'coco_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: coco(split, year)) # Set up ade_<split>_5 for split in ['train', 'val', 'mval', 'mtest']: name = 'ade_{}_5'.format(split) __sets[name] = (lambda split=split: ade(split)) # Set up vg_<split>_5,10 for split in ['train', 'val', 'test']: name = 'visual_genome_{}_5'.format(split) __sets[name] = (lambda split=split: visual_genome(split)) def get_imdb(name): """Get an imdb (image database) by name.""" if name not in __sets: raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]() def list_imdbs(): """List all registered imdbs.""" return list(__sets.keys())