Пример #1
0
    def setup(self, limit=None):
        if limit is not None and limit < 1:
            raise datasets.DatasetException('Limit must be at least 1.')

        # raw experimental images
        self.x = self._list_images('exp', limit)
        # ground truth
        self.y = self._list_images('ground', limit)

        self.on_epoch_end()
Пример #2
0
 def load(self, limit=None):
     if limit is not None:
         if limit < 4:
             raise datasets.DatasetException('Limit must be at least 4.')
         limit = np.floor(limit / 4)
     # noisy dataset
     self.X_train = np.array(
         self.load_images_from_dir('dipoles_hc_noise', limit)
         + self.load_images_from_dir('dipoles_lc_noise', limit)
         + self.load_images_from_dir('dipoles_vlc_noise', limit)
         + self.load_images_from_dir('constants_noise', limit)
     )
     # clean dataset
     self.Y_train = np.array(
         self.load_images_from_dir('dipoles_hc', limit)
         + self.load_images_from_dir('dipoles_lc', limit)
         + self.load_images_from_dir('dipoles_vlc', limit)
         + self.load_images_from_dir('constants', limit)
     )