Пример #1
0
def get_data_loader(name, train=True):
    """Get data loader by name."""
    if name == "MNIST":
        return get_mnist(train)
    elif name == "USPS":
        return get_usps(train)
    elif name == "SVHN":
        return get_svhn(train)
Пример #2
0
def get_data_loader(name, train=True, get_dataset=False):
    """Get data loader by name."""
    if name == "MNIST":
        return get_mnist(train, get_dataset)
    elif name == "MNIST-M":
        return get_mnist_m(train, get_dataset)
    elif name == "SVHN":
        return get_svhn(train, get_dataset)
    elif name == "USPS":
        return get_usps(train, get_dataset)
Пример #3
0
def get_data_loader(name, train=True):
    """Get data loader by name."""
    if name == "MNIST":
        return get_mnist(train)
    elif name == "USPS":
        return get_usps(train)
    elif name == "CIFAR10":
        return get_cifar10(train)
    elif "CIFAR10-" in name:
        corruption = name.split('-')[1]
        return get_cifar10(train, corruption=corruption)
Пример #4
0
def get_data_loader(name, train=True,domain=None,visualize=False):
    """Get data loader by name."""
    if name == "MNIST":
        raise NotImplementedError
        return get_mnist(train)
    elif name == "USPS":
        raise NotImplementedError
        return get_usps(train)
    elif name == "Dollarstreet":
        return get_dollarstreet(visualize,domain)
    else:
        raise NotImplementedError
Пример #5
0
def get_data_loader(name, train=True):
    """Get data loader by name."""
    if name == "MNIST":
        dataset = get_mnist(train)
    elif name == "MNISTM":
        dataset = get_mnistm(train)
    elif name == "USPS":
        dataset = get_usps(train)
    elif name == "SVHN":
        dataset = get_svhn(train)

    if train:
        data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                                  batch_size=params.batch_size,
                                                  shuffle=True)
    else:
        data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                                  batch_size=1,
                                                  shuffle=False)

    return data_loader
Пример #6
0
def get_data_loader(name, train=True, dataset=None, sample=False):
    """Get data loader by name."""
    if name == "MNIST":
        return get_mnist(train, sample)
    elif name == "MNIST-M":
        return get_mnist_m(train)
    elif name == "SVHN":
        return get_svhn(train)
    elif name == "USPS":
        return get_usps(train, sample)
    elif name == "SYNTH":
        return get_synth(train)
    elif name == "SYNTHSIGN":
        return get_synthsign(train)
    elif name == "GTSRB":
        return get_gtsrb(train)
    elif name == "STL":
        return get_stl(train)
    elif name == "CIFA":
        return get_cifa(train)
    elif name == "PIE27":
        return get_pie27(train)
    elif name == "PIE05":
        return get_pie05(train)
    elif name == "PIE09":
        return get_pie09(train)
    elif name == "PIE37":
        return get_pie37(train)
    elif name == "PIE25":
        return get_pie25(train)
    elif name == "PIE02":
        return get_pie02(train)
    elif name == "taskcv_S":
        return get_taskcv_s(train)
    elif name == "taskcv_T":
        return get_taskcv_t(train)
    elif name == "OFFICE":
        return get_office(dataset)
Пример #7
0
import clusters
import datasets as ds
import estimate_k as ek

from sklearn.cluster import KMeans
from sklearn.cluster import SpectralClustering
from pymongo import MongoClient

# prepare datasets

# uci
uci_data, uci_target = ds.get_uci()
uci_data = uci_data.astype('float32') / 16.

# usps
usps_data, _, usps_test, usps_test_lable = ds.get_usps()

# mnist
mnist_train,_,mnist_test,mnist_test_lable = ds.get_mnist()
mnist_train = mnist_train.astype('float32') / 255.
mnist_train = mnist_train.reshape((len(mnist_train),np.prod(mnist_train.shape[1:]))) # make 28*28 img to 784 demission matrix
mnist_test = mnist_test.astype('float32') / 255.
mnist_test = mnist_test.reshape((len(mnist_test), np.prod(mnist_test.shape[1:])))

# fashion
fashion_train,_,fashion_test,fashion_test_lable = ds.get_fashion_mnist()
fashion_train = fashion_train.astype('float32') / 255.
fashion_train = fashion_train.reshape((len(fashion_train),np.prod(fashion_train.shape[1:]))) # make 28*28 img to 784 demission matrix
fashion_test = fashion_test.astype('float32') / 255.
fashion_test = fashion_test.reshape((len(fashion_test), np.prod(fashion_test.shape[1:])))