Пример #1
0
    def next_batch(self,
                   batch_size=64,
                   pad=0,
                   raw=False,
                   tokenizer=['spacy', 'split', 'split'],
                   one_hot=False):
        # format: either 'one_hot' or 'numerical'
        # rescale: if format is 'numerical', then this should be a tuple
        #           (min, max)

        samples = None
        if self._index_in_epoch + batch_size > len(self.data):
            samples = self.data[self._index_in_epoch:len(self.data)]
            random.shuffle(self.data)
            missing_samples = batch_size - (len(self.data) -
                                            self._index_in_epoch)
            self._epochs_completed += 1
            samples.extend(self.data[0:missing_samples])
            self._index_in_epoch = missing_samples
        else:
            samples = self.data[self._index_in_epoch:self._index_in_epoch +
                                batch_size]
            self._index_in_epoch += batch_size

        data = list(zip(*samples))
        sentences = data[0]
        pos = data[1]
        ner = data[2]

        # Generate sequences
        sentences = self.generate_sequences(sentences, tokenizer[0])
        pos = self.generate_sequences(pos, tokenizer[1])
        ner = self.generate_sequences(ner, tokenizer[2])

        lengths = [len(s) if pad == 0 else min(pad, len(s)) for s in sentences]

        if (raw):
            return self.Batch(sentences=sentences,
                              pos=pos,
                              ner=ner,
                              lengths=lengths)

        sentences = datasets.padseq(
            datasets.seq2id(sentences, self.vocab_w2i[0]), pad)
        pos = datasets.padseq(datasets.seq2id(pos, self.vocab_w2i[1]), pad)
        ner = datasets.padseq(datasets.seq2id(ner, self.vocab_w2i[2]), pad)

        if one_hot:
            ner = [
                to_categorical(n, nb_classes=len(self.vocab_w2i[2]))
                for n in ner
            ]

        batch = self.Batch(sentences=sentences,
                           pos=pos,
                           ner=ner,
                           lengths=lengths)

        return batch
def get_similarity_siamese(s1_text, s2_text, model_siam, sess):
    s1_encoded, s2_encoded = get_sents_encoded(s1_text, s2_text)
    s1 = datasets.padseq([s1_encoded], pad=30)
    s2 = datasets.padseq([s2_encoded], pad=30)

    feed_dict = {
        model_siam.input_s1: s1,
        model_siam.input_s2: s2,
        model_siam.input_sim: [0.0],
    }
    ops = [model_siam.distance]
    sim = sess.run(ops, feed_dict)
    return sim
Пример #3
0
    def next_batch(self, batch_size=64, seq_begin=False, seq_end=False,
                   rescale=(0.0, 1.0), pad=0, raw=False, keep_entities=False):
        if not self.datafile:
            raise Exception('The dataset needs to be open before being used. '
                            'Please call dataset.open() before calling '
                            'dataset.next_batch()')
        datasets.validate_rescale(rescale)

        s1s, s2s, sims = [], [], []

        while len(s1s) < batch_size:
            row = self.datafile.readline()
            if row == '':
                self._epochs_completed += 1
                self.datafile.seek(0)
                continue
            cols = row.strip().split('\t')
            s1, s2, sim = cols[0], cols[1], float(cols[2])
            s1, s2 = s1.split(' '), s2.split(' ')

            # convert to dependency tree

            s1s.append(s1)
            s2s.append(s2)
            sims.append(sim)

        if not keep_entities:
            s1s = self.remove_entities(s1s)
            s2s = self.remove_entities(s2s)

        if not raw:
            s1s = datasets.seq2id(s1s[:batch_size], self.vocab_w2i, seq_begin,
                                  seq_end)
            s2s = datasets.seq2id(s2s[:batch_size], self.vocab_w2i, seq_begin,
                                  seq_end)
        else:
            s1s = datasets.append_seq_markers(s1s[:batch_size], seq_begin, seq_end)
            s2s = datasets.append_seq_markers(s2s[:batch_size], seq_begin, seq_end)
        if pad != 0:
            s1s = datasets.padseq(s1s, pad, raw)
            s2s = datasets.padseq(s2s, pad, raw)
        batch = self.Batch(
            s1=s1s,
            s2=s2s,
            sim=datasets.rescale(sims[:batch_size], rescale, (0.0, 1.0)))
        return batch
Пример #4
0
    def next_batch(self,
                   batch_size=64,
                   seq_begin=False,
                   seq_end=False,
                   pad=0,
                   raw=False,
                   mark_entities=False,
                   tokenizer='spacy',
                   one_hot=False):

        if not self.datafile:
            raise Exception('The dataset needs to be open before being used. '
                            'Please call dataset.open() before calling '
                            'dataset.next_batch()')
        text, emotion = [], []

        while len(text) < batch_size:
            row = self.datafile.readline()
            if row == '':
                self._epochs_completed += 1
                self.datafile.seek(0)
                continue
            cols = row.strip().split('\t')
            try:
                tweet, emo = cols[0], int(cols[1])
            except Exception as e:
                print('Invalid data instance. Skipping line.')
                continue
            text.append(datasets.tokenize(tweet, tokenizer))
            emotion.append(emo)

        if one_hot:
            emotion = to_categorical(emotion, nb_classes=self.n_classes)

        if mark_entities:
            text = datasets.mark_entities(text, lang='en')

        if not raw:
            text = datasets.seq2id(text[:batch_size], self.vocab_w2i,
                                   seq_begin, seq_end)
        else:
            text = datasets.append_seq_markers(text[:batch_size], seq_begin,
                                               seq_end)

        if pad != 0:
            text = datasets.padseq(text[:batch_size], pad, raw)

        batch = self.Batch(text=text, emotion=emotion)
        return batch
Пример #5
0
    def next_batch(self,
                   batch_size=64,
                   format='one_hot',
                   rescale=None,
                   pad=0,
                   raw=False,
                   tokenizer='spacy'):

        samples = None
        if self._index_in_epoch + batch_size > len(self.data):
            samples = self.data[self._index_in_epoch:len(self.data)]
            random.shuffle(self.data)
            missing_samples = batch_size - (len(self.data) -
                                            self._index_in_epoch)
            self._epochs_completed += 1
            samples.extend(self.data[0:missing_samples])
            self._index_in_epoch = missing_samples
        else:
            samples = self.data[self._index_in_epoch:self._index_in_epoch +
                                batch_size]
            self._index_in_epoch += batch_size

        x, y = zip(*samples)
        # Generate sequences
        x = self.generate_sequences(x, tokenizer)
        lens = [len(s) if pad == 0 else min(pad, len(s)) for s in x]

        if (raw):
            return self.Batch(x=x, y=y, lengths=lens)

        if (format == 'one_hot'):
            y = to_categorical(y, nb_classes=3)

        if (rescale is not None):
            datasets.validate_rescale(rescale)
            y = datasets.rescale(y, rescale, (0.0, 2.0))

        batch = self.Batch(x=datasets.padseq(
            datasets.seq2id(x, self.vocab_w2i), pad),
                           y=y,
                           lengths=lens)

        return batch
Пример #6
0
    def next_batch(self, batch_size=64, seq_begin=False, seq_end=False,
                   rescale=None, pad=0, raw=False, mark_entities=False,
                   tokenizer='spacy', sentence_pad=0, one_hot=False):
        if not self.datafile:
            raise Exception('The dataset needs to be open before being used. '
                            'Please call dataset.open() before calling '
                            'dataset.next_batch()')
        text, sentences, ratings, titles, lengths = [], [], [], [], []

        while len(text) < batch_size:
            row = self.datafile.readline()
            if row == '':
                self._epochs_completed += 1
                self.close()
                self.datafile = open(self.path_list[self.epochs_completed % len(self.path_list)])
                continue
            json_obj = json.loads(row.strip())
            text.append(datasets.tokenize(json_obj["review_text"], tokenizer))
            lengths.append(len(text[-1]))
            sentences.append(datasets.sentence_tokenizer(json_obj["review_text"]))
            ratings.append(int(json_obj["review_rating"]))
            titles.append(datasets.tokenize(json_obj["review_header"]))


        if rescale is not None and one_hot == False:
            ratings = datasets.rescale(ratings, rescale, [1.0, 5.0])
        elif rescale is None and one_hot == True:
            ratings = [x - 1 for x in ratings]
            ratings = to_categorical(ratings, nb_classes=5)
        elif rescale is None and one_hot == False:
            pass
        else:
            raise ValueError('rescale and one_hot cannot be set together')
        if mark_entities:
            text = datasets.mark_entities(text, lang='de')
            titles = datasets.mark_entities(titles, lang='de')
            sentences = [datasets.mark_entities(sentence, lang='de')
                         for sentence in sentences]

        if not raw:
            text = datasets.seq2id(text[:batch_size], self.vocab_w2i, seq_begin,
                                  seq_end)
            titles = datasets.seq2id(titles[:batch_size], self.vocab_w2i,
                                     seq_begin, seq_end)
            sentences = [datasets.seq2id(sentence, self.vocab_w2i,
                     seq_begin, seq_end) for sentence in sentences[:batch_size]]
        else:
            text = datasets.append_seq_markers(text[:batch_size],
                                               seq_begin, seq_end)
            titles = datasets.append_seq_markers(titles[:batch_size],
                                                 seq_begin, seq_end)
            sentences = [datasets.append_seq_markers(sentence, seq_begin,
                         seq_end) for sentence in sentences[:batch_size]]

        if pad != 0:
            text = datasets.padseq(text[:batch_size], pad, raw)
            titles = datasets.padseq(titles[:batch_size], pad, raw)
            sentences = [datasets.padseq(sentence, pad, raw) for sentence in
                         sentences[:batch_size]]
        if sentence_pad != 0:
            sentences = [datasets.pad_sentences(sentence, sentence_pad, raw) for
                         sentence in sentences[:batch_size]]

        batch = self.Batch(text=text, sentences=sentences,
                           ratings=ratings, titles=titles, lengths=lengths)
        return batch
    def next_batch(self,
                   batch_size=64,
                   seq_begin=False,
                   seq_end=False,
                   rescale=None,
                   pad=0,
                   raw=False,
                   mark_entities=False,
                   tokenizer='spacy',
                   sentence_pad=0,
                   one_hot=False):
        if not self.datafile:
            raise Exception('The dataset needs to be open before being used. '
                            'Please call dataset.open() before calling '
                            'dataset.next_batch()')
        text, sentences, ratings_service, ratings_cleanliness, \
        ratings_overall, ratings_value, ratings_sleep_quality, ratings_rooms, \
        titles, helpful_votes, lengths = [], [], [], [], [], [], [], [], [], [], []

        while len(text) < batch_size:
            row = self.datafile.readline()
            if row == '':
                self._epochs_completed += 1
                self.close()
                self.datafile = open(self.path_list[self.epochs_completed %
                                                    len(self.path_list)])
                continue
            json_obj = json.loads(row.strip())
            text.append(datasets.tokenize(json_obj["text"], tokenizer))
            lengths.append(len(text[-1]))
            sentences.append(datasets.sentence_tokenizer((json_obj["text"])))
            ratings_service.append(
                int(json_obj["ratings"]["service"]) if 'service' in
                json_obj['ratings'] else int(json_obj['ratings']['overall']))
            ratings_cleanliness.append(
                int(json_obj["ratings"]["cleanliness"]) if 'cleanliness' in
                json_obj['ratings'] else int(json_obj['ratings']['overall']))
            ratings_overall.append(int(json_obj["ratings"]["overall"]))
            ratings_value.append(
                int(json_obj["ratings"]["value"]) if 'value' in
                json_obj['ratings'] else int(json_obj['ratings']['overall']))
            ratings_sleep_quality.append(
                int(json_obj["ratings"]["sleep_quality"]) if 'sleep_quality' in
                json_obj['ratings'] else int(json_obj['ratings']['overall']))
            ratings_rooms.append(
                int(json_obj["ratings"]["rooms"]) if 'rooms' in
                json_obj['ratings'] else int(json_obj['ratings']['overall']))
            helpful_votes.append(json_obj["num_helpful_votes"])
            titles.append(datasets.tokenize(json_obj["title"]))

        if rescale is not None and one_hot == False:
            ratings_service = datasets.rescale(ratings_service, rescale,
                                               [1.0, 5.0])
            ratings_cleanliness = datasets.rescale(ratings_cleanliness,
                                                   rescale, [1.0, 5.0])
            ratings_overall = datasets.rescale(ratings_overall, rescale,
                                               [1.0, 5.0])
            ratings_value = datasets.rescale(ratings_value, rescale,
                                             [1.0, 5.0])
            ratings_sleep_quality = datasets.rescale(ratings_sleep_quality,
                                                     rescale, [1.0, 5.0])
            ratings_rooms = datasets.rescale(ratings_rooms, rescale,
                                             [1.0, 5.0])
        elif rescale is None and one_hot == True:
            ratings_service = to_categorical([x - 1 for x in ratings_service],
                                             nb_classes=5)
            ratings_cleanliness = to_categorical(
                [x - 1 for x in ratings_cleanliness], nb_classes=5)
            ratings_overall = to_categorical([x - 1 for x in ratings_overall],
                                             nb_classes=5)
            ratings_value = to_categorical([x - 1 for x in ratings_value],
                                           nb_classes=5)
            ratings_sleep_quality = to_categorical(
                [x - 1 for x in ratings_sleep_quality], nb_classes=5)
            ratings_rooms = to_categorical([x - 1 for x in ratings_rooms],
                                           nb_classes=5)
        elif rescale is None and one_hot == False:
            pass
        else:
            raise ValueError('rescale and one_hot cannot be set together')

        if mark_entities:
            text = datasets.mark_entities(text)
            titles = datasets.mark_entities(titles)
            sentences = [
                datasets.mark_entities(sentence) for sentence in sentences
            ]

        if not raw:
            text = datasets.seq2id(text[:batch_size], self.vocab_w2i,
                                   seq_begin, seq_end)
            titles = datasets.seq2id(titles[:batch_size], self.vocab_w2i,
                                     seq_begin, seq_end)
            sentences = [
                datasets.seq2id(sentence, self.vocab_w2i, seq_begin, seq_end)
                for sentence in sentences[:batch_size]
            ]
        else:
            text = datasets.append_seq_markers(text[:batch_size], seq_begin,
                                               seq_end)
            titles = datasets.append_seq_markers(titles[:batch_size],
                                                 seq_begin, seq_end)
            sentences = [
                datasets.append_seq_markers(sentence, seq_begin, seq_end)
                for sentence in sentences[:batch_size]
            ]

        if pad != 0:
            text = datasets.padseq(text[:batch_size], pad, raw)
            titles = datasets.padseq(titles[:batch_size], pad, raw)
            sentences = [
                datasets.padseq(sentence, pad, raw)
                for sentence in sentences[:batch_size]
            ]
        if sentence_pad != 0:
            sentences = [
                datasets.pad_sentences(sentence, pad, raw)
                for sentence in sentences[:batch_size]
            ]

        batch = self.Batch(text=text,
                           sentences=sentences,
                           ratings_service=ratings_service,
                           ratings_cleanliness=ratings_cleanliness,
                           ratings=ratings_overall,
                           ratings_value=ratings_value,
                           ratings_sleep_quality=ratings_sleep_quality,
                           ratings_rooms=ratings_rooms,
                           titles=titles,
                           helpful_votes=helpful_votes,
                           lengths=lengths)
        return batch