def pTestGivenDis(d): if d == "болен": return DDist({"положительный": 0.99, "отрицательный": 0.01}) elif d == "здоров": return DDist({"положительный": 0.001, "отрицательный": 0.999}) else: raise Exception("неправильное значение для D")
def _oodelayPoisson(ddist, lambd): cmf = [] tcmf = [] #front dist for i in range(len(ddist.cmfy)): s = 0 #front part for j in range(i, len(ddist.cmfy)): s += (1 - ddist.cmfy[j]) * ddist.h #tail part for j in range(len(ddist.tcmfy)): s += (1 - ddist.tcmfy[j]) * ddist.th p = ddist.cmfy[i] * np.exp(-lambd * s) cmf.append(p) #tail dist for i in range(len(ddist.tcmfy)): s = 0 for j in range(i, len(ddist.tcmfy)): s += (1 - ddist.tcmfy[j]) * ddist.th p = ddist.tcmfy[i] * np.exp(-lambd * s) tcmf.append(p) pmf = [cmf[0]] for i in range(1, len(cmf)): pmf.append(cmf[i] - cmf[i - 1]) if len(tcmf) == 0: return DDist(ddist.lb, pmf, ddist.h, [], ddist.th) else: tpmf = [tcmf[0] - cmf[-1]] for i in range(1, len(tcmf)): tpmf.append(tcmf[i] - tcmf[i - 1]) return DDist(ddist.lb, pmf, ddist.h, tpmf, ddist.th)
def _oodelayFixedInterval(ddist, intvl): cmf = [] tcmf = [] #front dist for i in range(len(ddist.cmfy)): curr = 1 prev = 0 #front part start = ddist.lb + i * ddist.h x = start while x < ddist.tb: j = int(floor((x - ddist.lb) / ddist.h)) prev = curr curr *= ddist.cmfy[j] x += intvl if curr < 1e-10: x = ddist.ub break if abs(prev - curr) / curr < 1e-6: x = ddist.ub break #tail part while x < ddist.ub: j = int(floor((x - ddist.tb) / ddist.th)) prev = curr curr *= ddist.tcmfy[j] x += intvl if curr < 1e-10: break if abs(prev - curr) / curr < 1e-6: break cmf.append(curr) #tail dist for i in range(len(ddist.tcmfy)): curr = 1 prev = 0 start = ddist.tb + i * ddist.th x = start while x < ddist.ub: j = int(floor((x - ddist.tb) / ddist.th)) prev = curr curr *= ddist.tcmfy[j] x += intvl if curr < 1e-10: break if abs(prev - curr) / curr < 1e-6: break tcmf.append(curr) pmf = [cmf[0]] for i in range(1, len(cmf)): pmf.append(cmf[i] - cmf[i - 1]) if len(tcmf) == 0: return DDist(ddist.lb, pmf, ddist.h, [], ddist.th) else: tpmf = [tcmf[0] - cmf[-1]] for i in range(1, len(tcmf)): tpmf.append(tcmf[i] - tcmf[i - 1]) return DDist(ddist.lb, pmf, ddist.h, tpmf, ddist.th)
def testMaxn(): print '===== test maxn =====' print '\n>>>normal\n' mu = 10 sigma = 3 n = 5 x = [] y = [] for i in range(100000): m = -sys.maxint for j in range(n): r = np.random.normal(mu, sigma) x.append(r) if r > m: m = r y.append(m) ddist0 = DDist.create(x) ddist1 = DDist.create(y) ddist2 = maxn(n, ddist0) print 'base', ddist0.mean, ddist0.std print 'sim', ddist1.mean, ddist1.std print 'ana', ddist2.mean, ddist2.std ddist1.plot('/tmp/test_maxn_normal1.pdf') ddist2.plot('/tmp/test_maxn_normal2.pdf') print '\n>>>pareto\n' a = 1.3 x0 = 0 x = [] y = [] for i in range(100000): m = -sys.maxint for j in range(n): r = np.random.pareto(a) + x0 x.append(r) if r > m: m = r y.append(m) ddist0 = DDist.create(x, tail=('p', 0.1), tnh=25) ddist1 = DDist.create(y, tail=('p', 0.1), tnh=25) #ddist0 = DDist.create(x) #ddist1 = DDist.create(y) ddist2 = maxn(n, ddist0) print 'base', ddist0.mean, ddist0.std, 'length', len(ddist0.pmfy), len( ddist0.tpmfy) print 'sim', ddist1.mean, ddist1.std, 'length', len(ddist1.pmfy), len( ddist1.tpmfy) print 'ana', ddist2.mean, ddist2.std, 'length', len(ddist2.pmfy), len( ddist2.tpmfy) ddist1.plot('/tmp/test_maxn_pareto1.pdf') ddist2.plot('/tmp/test_maxn_pareto2.pdf') print '===== end =====\n'
def testMaxn(): print '===== test maxn =====' print '\n>>>normal\n' mu = 10 sigma = 3 n = 5 x = [] y = [] for i in range(100000): m = -sys.maxint for j in range(n): r = np.random.normal(mu, sigma) x.append(r) if r > m: m = r y.append(m) ddist0 = DDist.create(x) ddist1 = DDist.create(y) ddist2 = maxn(n, ddist0) print 'base', ddist0.mean, ddist0.std print 'sim', ddist1.mean, ddist1.std print 'ana', ddist2.mean, ddist2.std ddist1.plot('/tmp/test_maxn_normal1.pdf') ddist2.plot('/tmp/test_maxn_normal2.pdf') print '\n>>>pareto\n' a = 1.3 x0 = 0 x = [] y = [] for i in range(100000): m = -sys.maxint for j in range(n): r = np.random.pareto(a) + x0 x.append(r) if r > m: m = r y.append(m) ddist0 = DDist.create(x, tail=('p', 0.1), tnh=25) ddist1 = DDist.create(y, tail=('p', 0.1), tnh=25) #ddist0 = DDist.create(x) #ddist1 = DDist.create(y) ddist2 = maxn(n, ddist0) print 'base', ddist0.mean, ddist0.std, 'length', len(ddist0.pmfy), len(ddist0.tpmfy) print 'sim', ddist1.mean, ddist1.std, 'length', len(ddist1.pmfy), len(ddist1.tpmfy) print 'ana', ddist2.mean, ddist2.std, 'length', len(ddist2.pmfy), len(ddist2.tpmfy) ddist1.plot('/tmp/test_maxn_pareto1.pdf') ddist2.plot('/tmp/test_maxn_pareto2.pdf') print '===== end =====\n'
def maxn(n, ddist): cmf = [] for p in ddist.cmfy: cmf.append(p**n) tcmf = [] for p in ddist.tcmfy: tcmf.append(p**n) pmf = [cmf[0]] for i in range(1, len(cmf)): pmf.append(cmf[i] - cmf[i - 1]) if len(tcmf) == 0: return DDist(ddist.lb, pmf, ddist.h, [], ddist.th) else: tpmf = [tcmf[0] - cmf[-1]] for i in range(1, len(tcmf)): tpmf.append(tcmf[i] - tcmf[i - 1]) return DDist(ddist.lb, pmf, ddist.h, tpmf, ddist.th)
def testCond(): print '===== test cond =====' print '\n>>> normal\n' p = 0.8 mu1 = 10 sigma1 = 3 mu2 = 20 sigma2 = 1 x1 = [] x2 = [] y = [] for i in range(100000): r = np.random.random() if r < p: s = np.random.normal(mu1, sigma1) x1.append(s) y.append(s) else: s = np.random.normal(mu2, sigma2) x2.append(s) y.append(s) ddist0 = DDist.create(x1) ddist1 = DDist.create(x2) ddist2 = DDist.create(y) ddist3 = cond(p, ddist0, ddist1) print 'base1', ddist0.mean, ddist0.std print 'base2', ddist1.mean, ddist1.std print 'sim', ddist2.mean, ddist2.std print 'ana', ddist3.mean, ddist3.std ddist2.plot('/tmp/test_cond_norm1.pdf') ddist3.plot('/tmp/test_cond_norm2.pdf') print '\n>>> pareto\n' p = 0.5 a1 = 1.1 a2 = 1.2 x1 = [] x2 = [] y = [] for i in range(100000): r = np.random.random() if r < p: s = np.random.pareto(a1) x1.append(s) y.append(s) else: s = np.random.pareto(a2) + 10 x2.append(s) y.append(s) ddist0 = DDist.create(x1, tail=('p', 0.1), tnh=10) ddist1 = DDist.create(x2, tail=('p', 0.1), tnh=10) ddist2 = DDist.create(y) ddist3 = cond(p, ddist0, ddist1) print 'base1', ddist0.mean, ddist0.std print 'base2', ddist1.mean, ddist1.std print 'sim', ddist2.mean, ddist2.std print 'ana', ddist3.mean, ddist3.std ddist2.plot('/tmp/test_cond_pareto1.pdf') ddist3.plot('/tmp/test_cond_pareto2.pdf') print '===== end =====\n'
def getEPLatencyDist(n, ddist, sync, elen): f = int(np.ceil(n / 2.0) - 1) rtrip = quorum(n, f, ddist) syncRtrip = rtrip + sync elatency = maxn(n, syncRtrip) #wait time is a uniform distribution on elen lb = 0 ub = elen length = int((ub - lb) / ddist.h) + 1 pmf = [1.0 / length] * length ewait = DDist(lb, pmf, h=ddist.h, th=ddist.th) delay = oodelay(elatency, { 'arrival.process': 'fixed', 'fixed.interval': elen }) return ewait + delay, delay, rtrip
def _quorumR(n, m, sTrip, rTrip): if m <= 2: raise ValueError( 'We only consider cases when quorum size larger than 2') scmf, stcmf = _paddingSTrip(sTrip, rTrip.lb, rTrip.tb, rTrip.ub) cmf = [] tcmf = [] assert len(scmf) == len(rTrip.cmfy) and len(stcmf) == len(rTrip.tcmfy), \ 'scmf.l = %s == %s = r.cmfy.l, tscmf.l = %s == %s = r.tcmfy.l' %( len(scmf), len(rTrip.cmfy), len(stcmf), len(rTrip.tcmfy)) #scmf/cmf and stcmf/tcmf are aligned for i in range(len(scmf)): ps = scmf[i] pr = rTrip.cmfy[i] p = 0.0 for j in range(m, n + 1): for k in range(3): if n - 2 - j + k >= 0 and j - k >= 0: p += comb(2, k) * ps**k * (1 - ps)**(2 - k) * \ comb(n - 2, j - k) * \ pr**(j - k) * (1 - pr)**(n - 2 - j + k) cmf.append(p) for i in range(len(stcmf)): ps = stcmf[i] pr = rTrip.tcmfy[i] p = 0.0 for j in range(m, n + 1): for k in range(3): if n - 2 - j + k >= 0 and j - k >= 0: p += comb(2, k) * ps**k * (1 - ps)**(2 - k) * \ comb(n - 2, j - k) * \ pr**(j - k) * (1 - pr)**(n - 2 - j + k) tcmf.append(p) #compute pmf pmf = [cmf[0]] for i in range(1, len(cmf)): pmf.append(cmf[i] - cmf[i - 1]) if len(tcmf) == 0: tpmf = [] else: tpmf = [tcmf[0] - cmf[-1]] for i in range(1, len(tcmf)): tpmf.append(tcmf[i] - tcmf[i - 1]) return DDist(rTrip.lb, pmf, rTrip.h, tpmf, rTrip.th)
def cond(p, ddist1, ddist2): if ddist1.h != ddist2.h or ddist1.th != ddist2.th: raise ValueError('DDists must have the same sample rate to use cond') h = ddist1.h th = ddist1.th lb = min(ddist1.lb, ddist2.lb) tb = max(ddist1.tb, ddist2.tb) ub = max(ddist1.ub, ddist2.ub) pmf = [] tpmf = [] pmf1 = _paddingPmf(ddist1, lb, tb) pmf2 = _paddingPmf(ddist2, lb, tb) assert len(pmf1) == len(pmf2), \ 'len(pmf1) = %s == %s = len(pmf2)'%(len(pmf1), len(pmf2)) tpmf1 = _paddingTpmf(ddist1, tb, ub) tpmf2 = _paddingTpmf(ddist2, tb, ub) assert len(tpmf1) == len(tpmf2), \ 'len(tpmf1) = %s == %s = len(tpmf2)'%(len(tpmf1), len(tpmf2)) for i in range(len(pmf1)): pmf.append(p * pmf1[i] + (1 - p) * pmf2[i]) for i in range(len(tpmf1)): tpmf.append(p * tpmf1[i] + (1 - p) * tpmf2[i]) return DDist(lb, pmf, h, tpmf, th)
def _quorumC(n, m, rTrip): #front distribution cmf = [0.0] * len(rTrip.cmfy) for i in range(len(cmf)): p = rTrip.cmfy[i] for j in range(m, n + 1): cmf[i] += comb(n, j) * p**j * (1 - p)**(n - j) #tail disctribution tcmf = [0.0] * len(rTrip.tcmfy) for i in range(len(tcmf)): p = rTrip.tcmfy[i] for j in range(m, n + 1): tcmf[i] += comb(n, j) * p**j * (1 - p)**(n - j) #comput pmf pmf = [cmf[0]] for i in range(1, len(cmf)): pmf.append(cmf[i] - cmf[i - 1]) if len(tcmf) == 0: tpmf = [] else: tpmf = [tcmf[0] - cmf[-1]] for i in range(1, len(tcmf)): tpmf.append(tcmf[i] - tcmf[i - 1]) return DDist(rTrip.lb, pmf, rTrip.h, tpmf, rTrip.th)
def PBgA(a): if a == "a1": return DDist({"b1": 0.7, "b2": 0.3}) else: return DDist({"b1": 0.2, "b2": 0.8})
def testQuorum(): print '===== test quorum =====' lambd = 50 a = 1.8 n = 5 f = 2 x = {'gen' : [], 'exp':[], 'pareto':[]} yc = {'gen' : [], 'exp':[], 'pareto':[]} yr = {'gen' : [], 'exp':[], 'pareto':[]} y = {'gen' : [], 'exp':[], 'pareto':[]} dists = ['gen', 'exp', 'pareto'] leader = 0 def gen(): r = np.random.random() if r < 0.2: return 1 elif r < 0.4: return 2 elif r < 0.6: return 3 elif r < 0.8: return 4 else: return 8 for i in range(100000): first = {} second = {} latencies = {'gen':[], 'exp':[], 'pareto':[]} learner = np.random.randint(n) for acceptor in range(n): if leader == acceptor: for k in dists: first[k] = 0 else: first['gen'] = gen() first['exp'] = np.random.exponential(lambd) first['pareto'] = np.random.pareto(a) for k in dists: x[k].append(first[k]) if acceptor == learner: for k in dists: second[k] = 0 else: second['gen'] = gen() second['exp'] = np.random.exponential(lambd) second['pareto'] = np.random.pareto(a) for k in dists: x[k].append(second[k]) for k in dists: latencies[k].append(first[k] + second[k]) for k in dists: l = sorted(latencies[k]) y[k].append(l[n - f - 1]) if leader == learner: assert l[0] == 0 yc[k].append(l[n - f - 1]) else: yr[k].append(l[n - f - 1]) for k in dists: print '\n>>> %s\n'%k if k == 'gen': ddist0 = DDist.create(x[k], h=1, tail=('b', 4), tnh=4) elif k == 'exp': ddist0 = DDist.create(x[k], h=0.5) else: ddist0 = DDist.create(x[k], h=0.5, tail=('p', 0.1), tnh=20) print 'created ddist0' if k == 'gen': ddist1 = DDist.create(y[k], h=1, tail=('b', 8), tnh=4) ddistc1 = DDist.create(yc[k], h=1, tail=('b', 8), tnh=4) ddistr1 = DDist.create(yr[k], h=1, tail=('b', 8), tnh=4) print 'base pmf', ddist1.getPmfxy() print 'base c pmf', ddistc1.getPmfxy() print 'base r pmf', ddistr1.getPmfxy() else: ddist1 = DDist.create(y[k], h=0.05) ddistc1 = DDist.create(yc[k], h=0.05) ddistr1 = DDist.create(yr[k], h=0.05) ddist2 = quorum(n, f, ddist0) print 'computed quorum' rtrip = ddist0 + ddist0 ddistc2 = _quorumC(n - 1, n - f - 1, rtrip) ddistr2 = _quorumR(n, n - f, ddist0, rtrip) if k == 'gen': print 'q pmf', ddist2.getPmfxy() print 'q c pmf', ddistc2.getPmfxy() print 'q r pmf', ddistr2.getPmfxy() print 'latency', ddist0.mean, ddist0.std print 'quorum sim', ddist1.mean, ddist1.std print 'quorum c sim', ddistc1.mean, ddistc1.std print 'quorum r sim', ddistr1.mean, ddistr1.std print 'quorum ana', ddist2.mean, ddist2.std print 'quorum c ana', ddistc2.mean, ddistc2.std print 'quorum r ana', ddistr2.mean, ddistr2.std ddist1.plot('/tmp/test_quorum_%s1.pdf'%k) ddistc1.plot('/tmp/test_quorumc_%s1.pdf'%k) ddistr1.plot('/tmp/test_quorumr_%s1.pdf'%k) ddist2.plot('/tmp/test_quorum_%s2.pdf'%k) ddistc2.plot('/tmp/test_quorumc_%s2.pdf'%k) ddistr2.plot('/tmp/test_quorumr_%s2.pdf'%k) print '===== end =====\n'
def flips(nFlips): '''nFlips число бросаний монеты, возвращает h - частоту выпадения орла.''' res = choices([0, 1], k=nFlips) h = sum(res) / nFlips #sum(res) число выпадений орла return h res = [flips(10) for k in range(8)] print(res) res = [flips(1000) for k in range(8)] print(res) from ddist import DDist, JDist #H орёл, T - решка. dm = DDist({"H": 1 / 2, "T": 1 / 2}) print(dm.trials(8)) PAB = DDist({ ("H", "H"): 1 / 4, ("H", "T"): 1 / 4, ("T", "H"): 1 / 4, ("T", "T"): 1 / 4 }) PA = PAB.marginalizeOut(1) print(PA) def pTestGivenDis(d): if d == "болен": return DDist({"положительный": 0.99, "отрицательный": 0.01}) elif d == "здоров":
def testoodelay(): print '===== test oodelay =====\n' intvl = 30 def genexpointvl(): return np.random.exponential(intvl) def genfixedintvl(): return intvl lambd = 100 a = 1.8 m = 100 lb = 50 tb = 150 ub = 1000 def customlatency(): r = np.random.random() if r < 0.2: return 30 elif r < 0.4: return 60 elif r < 0.6: return 90 elif r < 0.8: return 120 else: return 180 def expolatency(): return np.random.exponential(lambd) def paretolatency(): return np.random.pareto(a) + m def uniformlatency(): r = np.random.random() if r < 0.8: rr = np.random.random() return lb + rr * (tb - lb) else: rr = np.random.random() return tb + rr * (ub - tb) intvlkeys = {'fixed' : genfixedintvl, 'poisson' : genexpointvl} intvlopts = {'fixed' : 'fixed.interval', 'poisson' : 'poisson.lambda'} latencykeys = {'custom' : customlatency, 'expo' : expolatency, 'pareto' : paretolatency, 'uniform' : uniformlatency, } for ik in intvlkeys: for lk in latencykeys: print '\n>>> %s, %s\n'%(ik, lk) x, y = runoodelay(intvlkeys[ik], latencykeys[lk]) if lk == 'custom': ddist0 = DDist.create(x, h=30, tail=('b', 120), tnh=2) elif lk == 'expo': ddist0 = DDist.create(x, h=0.5) elif lk == 'uniform': ddist0 = DDist.create(x, h=0.5, tail=('b', 150), tnh=10) else: ddist0 = DDist.create(x, h=0.5, tail=('p', 0.1), tnh=10) if lk == 'custom': ddist1 = DDist.create(y, h=30) else: ddist1 = DDist.create(y, h=0.5) if ik == 'fixed': ddist2 = oodelay(ddist0, {'arrival.process' : 'fixed', 'fixed.interval' : intvl}) else: ddist2 = oodelay(ddist0, {'arrival.process' : 'poisson', 'poisson.lambda' : 1.0 / intvl}) print 'sim', ddist1.mean, ddist1.std print 'ana', ddist2.mean, ddist2.std if lk == 'custom': print 'sim pmf', ddist1.getPmfxy() print 'ana pmf', ddist2.getPmfxy() print '===== end =====\n'
def testoodelay(): print '===== test oodelay =====\n' intvl = 30 def genexpointvl(): return np.random.exponential(intvl) def genfixedintvl(): return intvl lambd = 100 a = 1.8 m = 100 lb = 50 tb = 150 ub = 1000 def customlatency(): r = np.random.random() if r < 0.2: return 30 elif r < 0.4: return 60 elif r < 0.6: return 90 elif r < 0.8: return 120 else: return 180 def expolatency(): return np.random.exponential(lambd) def paretolatency(): return np.random.pareto(a) + m def uniformlatency(): r = np.random.random() if r < 0.8: rr = np.random.random() return lb + rr * (tb - lb) else: rr = np.random.random() return tb + rr * (ub - tb) intvlkeys = {'fixed': genfixedintvl, 'poisson': genexpointvl} intvlopts = {'fixed': 'fixed.interval', 'poisson': 'poisson.lambda'} latencykeys = { 'custom': customlatency, 'expo': expolatency, 'pareto': paretolatency, 'uniform': uniformlatency, } for ik in intvlkeys: for lk in latencykeys: print '\n>>> %s, %s\n' % (ik, lk) x, y = runoodelay(intvlkeys[ik], latencykeys[lk]) if lk == 'custom': ddist0 = DDist.create(x, h=30, tail=('b', 120), tnh=2) elif lk == 'expo': ddist0 = DDist.create(x, h=0.5) elif lk == 'uniform': ddist0 = DDist.create(x, h=0.5, tail=('b', 150), tnh=10) else: ddist0 = DDist.create(x, h=0.5, tail=('p', 0.1), tnh=10) if lk == 'custom': ddist1 = DDist.create(y, h=30) else: ddist1 = DDist.create(y, h=0.5) if ik == 'fixed': ddist2 = oodelay(ddist0, { 'arrival.process': 'fixed', 'fixed.interval': intvl }) else: ddist2 = oodelay(ddist0, { 'arrival.process': 'poisson', 'poisson.lambda': 1.0 / intvl }) print 'sim', ddist1.mean, ddist1.std print 'ana', ddist2.mean, ddist2.std if lk == 'custom': print 'sim pmf', ddist1.getPmfxy() print 'ana pmf', ddist2.getPmfxy() print '===== end =====\n'
def testQuorum(): print '===== test quorum =====' lambd = 50 a = 1.8 n = 5 f = 2 x = {'gen': [], 'exp': [], 'pareto': []} yc = {'gen': [], 'exp': [], 'pareto': []} yr = {'gen': [], 'exp': [], 'pareto': []} y = {'gen': [], 'exp': [], 'pareto': []} dists = ['gen', 'exp', 'pareto'] leader = 0 def gen(): r = np.random.random() if r < 0.2: return 1 elif r < 0.4: return 2 elif r < 0.6: return 3 elif r < 0.8: return 4 else: return 8 for i in range(100000): first = {} second = {} latencies = {'gen': [], 'exp': [], 'pareto': []} learner = np.random.randint(n) for acceptor in range(n): if leader == acceptor: for k in dists: first[k] = 0 else: first['gen'] = gen() first['exp'] = np.random.exponential(lambd) first['pareto'] = np.random.pareto(a) for k in dists: x[k].append(first[k]) if acceptor == learner: for k in dists: second[k] = 0 else: second['gen'] = gen() second['exp'] = np.random.exponential(lambd) second['pareto'] = np.random.pareto(a) for k in dists: x[k].append(second[k]) for k in dists: latencies[k].append(first[k] + second[k]) for k in dists: l = sorted(latencies[k]) y[k].append(l[n - f - 1]) if leader == learner: assert l[0] == 0 yc[k].append(l[n - f - 1]) else: yr[k].append(l[n - f - 1]) for k in dists: print '\n>>> %s\n' % k if k == 'gen': ddist0 = DDist.create(x[k], h=1, tail=('b', 4), tnh=4) elif k == 'exp': ddist0 = DDist.create(x[k], h=0.5) else: ddist0 = DDist.create(x[k], h=0.5, tail=('p', 0.1), tnh=20) print 'created ddist0' if k == 'gen': ddist1 = DDist.create(y[k], h=1, tail=('b', 8), tnh=4) ddistc1 = DDist.create(yc[k], h=1, tail=('b', 8), tnh=4) ddistr1 = DDist.create(yr[k], h=1, tail=('b', 8), tnh=4) print 'base pmf', ddist1.getPmfxy() print 'base c pmf', ddistc1.getPmfxy() print 'base r pmf', ddistr1.getPmfxy() else: ddist1 = DDist.create(y[k], h=0.05) ddistc1 = DDist.create(yc[k], h=0.05) ddistr1 = DDist.create(yr[k], h=0.05) ddist2 = quorum(n, f, ddist0) print 'computed quorum' rtrip = ddist0 + ddist0 ddistc2 = _quorumC(n - 1, n - f - 1, rtrip) ddistr2 = _quorumR(n, n - f, ddist0, rtrip) if k == 'gen': print 'q pmf', ddist2.getPmfxy() print 'q c pmf', ddistc2.getPmfxy() print 'q r pmf', ddistr2.getPmfxy() print 'latency', ddist0.mean, ddist0.std print 'quorum sim', ddist1.mean, ddist1.std print 'quorum c sim', ddistc1.mean, ddistc1.std print 'quorum r sim', ddistr1.mean, ddistr1.std print 'quorum ana', ddist2.mean, ddist2.std print 'quorum c ana', ddistc2.mean, ddistc2.std print 'quorum r ana', ddistr2.mean, ddistr2.std ddist1.plot('/tmp/test_quorum_%s1.pdf' % k) ddistc1.plot('/tmp/test_quorumc_%s1.pdf' % k) ddistr1.plot('/tmp/test_quorumr_%s1.pdf' % k) ddist2.plot('/tmp/test_quorum_%s2.pdf' % k) ddistc2.plot('/tmp/test_quorumc_%s2.pdf' % k) ddistr2.plot('/tmp/test_quorumr_%s2.pdf' % k) print '===== end =====\n'