Пример #1
0
def load_syngo_genes():
    syngo = Ontology.from_table('../prev_databases/SynGO_BP.txt')
    syngo_bp_genes = syngo.genes
    syngo = Ontology.from_table('../prev_databases/SynGO_CC.txt')
    syngo_cc_genes = syngo.genes
    syngo_genes = list(set(syngo_bp_genes + syngo_cc_genes))
    return syngo_genes
def load_syngo_genes():
	syngo=Ontology.from_table('/Users/karenmei/Documents/Synapse_Ontology/NetworkClass/Metrics/SynGO_BP.txt')
	syngo_bp_genes=syngo.genes
	syngo=Ontology.from_table('/Users/karenmei/Documents/Synapse_Ontology/NetworkClass/Metrics/SynGO_CC.txt')
	syngo_cc_genes=syngo.genes
	syngo_genes=list(set(syngo_bp_genes+syngo_cc_genes))

	training=load_training_genes()
	syngo_genes=list(set(syngo_genes)-set(training))
	return syngo_genes
Пример #3
0
def compare(ont):

	#Generate custom ontology 1 from synapse branch from human GO
	#ontology_file=Generate_Ontology_File('GO:0045202', 'ont1.txt')
	ont1=Ontology.from_table('../../analyses/Histogram_ont/synapse.txt')
	#print ('num synapse ontology terms', len(ont1.terms))

	ont2=Ontology.from_table(fn)
	#print ('num custom ontology terms', len(ont2.terms))
	return(Num_Enriched_Modules(ont1, ont2))
Пример #4
0
def compare_to_go(ont_fn):

    #Generate custom ontology 1 from synapse branch from human GO
    #ontology_file=Generate_Ontology_File('GO:0045202', 'ont1.txt')
    synapse_ont = '/home/joreyna/projects/BNFO286/synapse_ontology/analyses/Histogram_ont/synapse.txt'
    ont1 = Ontology.from_table(synapse_ont)
    #print ('num synapse ontology terms', len(ont1.terms))

    ont2 = Ontology.from_table(ont_fn)
    #print ('num custom ontology terms', len(ont2.terms))
    return (Num_Enriched_Modules(ont1, ont2))
Пример #5
0
    def create_ddot_object(self, filename="ddot_output.txt", **kwargs):
        from ddot import Ontology

        self.ontology = Ontology.from_table(filename,
                                            clixo_format=True,
                                            **kwargs)

        return self
def load_pheno_hpo():
    hpo = Ontology.from_table(
        '/Users/karenmei/Documents/Synapse_Ontology/HPO/making_HPO/HPO_parent_child.txt'
    )
    #print (hpo)
    hpo = hpo.propagate(direction='forward', gene_term=True, term_term=False)
    hpo = hpo.focus(branches=['Phenotypic abnormality'])
    return hpo
Пример #7
0
def run_ddot(theargs):
    try:
        (e_code, c_out, c_err) = run_clixo(theargs.clixopath, theargs.input,
                                           theargs.alpha, theargs.beta)
        df = pd.read_csv(io.StringIO(c_out.decode('utf-8')),
                         sep='\t',
                         engine='python',
                         header=None,
                         comment='#')

        if theargs.output is not None:
            try:
                with open(theargs.output, 'wb') as f:
                    f.write(c_out)
                outputdir = os.path.dirname(theargs.output)
                statres = os.stat(outputdir)
                os.chown(theargs.output, statres[stat.ST_UID],
                         statres[stat.ST_GID])
            except Exception as ex:
                sys.stderr.write('Caught exception trying to write file or'
                                 'change permission: ' + str(ex))

        ont1 = Ontology.from_table(df, clixo_format=True, parent=0, child=1)

        if theargs.ndexserver.startswith('http://'):
            server = theargs.ndexserver
        else:
            server = 'http://' + theargs.ndexserver

        idf = pd.read_csv(theargs.input,
                          sep='\t',
                          engine='python',
                          header=None,
                          comment='#')
        idf.rename(columns={
            0: 'Gene1',
            1: 'Gene2',
            2: 'has_edge'
        },
                   inplace=True)
        ont_url, G = ont1.to_ndex(name=theargs.ndexname,
                                  network=idf,
                                  main_feature='has_edge',
                                  ndex_server=server,
                                  ndex_pass=theargs.ndexuser,
                                  ndex_user=theargs.ndexpass,
                                  layout=theargs.ndexlayout,
                                  visibility=theargs.ndexvisibility)
        return 'RESULT:' + ont_url.strip().replace('/v2/network/',
                                                   '/#/network/') + '\n'
    except OverflowError as ofe:
        logger.exception('Error running clixo')
        return 'ERROR:' + str(ofe) + '\n'
    except Exception as e:
        logger.exception('Some other error')
        return 'ERROR:' + str(e) + '\n'

    return {'error': 'unknown error'}
Пример #8
0
def load_syngo_presynapse():
    syngo = Ontology.from_table(
        '/Users/karenmei/Documents/Synapse_Ontology/NetworkClass/Metrics/SynGO_CC.txt'
    )
    syngo = syngo.propagate(direction='forward',
                            gene_term=True,
                            term_term=False)
    pre = syngo.focus(branches=['presynapse'])
    pre_genes = pre.genes
    return pre_genes
Пример #9
0
def upload_file():
    #=================
    # default values
    #=================
    alpha = 0.05
    beta = 0.5

    try:
        data = request.files.get('file')
    except Exception as e:
        raise HTTPError(500, e)

    if data and data.file:
        if (request.query.alpha):
            alpha = request.query.alpha

        if (request.query.beta):
            beta = request.query.beta

        with tempfile.NamedTemporaryFile('w', delete=False) as f:
            f.write(data.file.read())
            f_name = f.name
            f.close()

        try:
            clixo_file = generate_clixo_file(f_name, alpha, beta)

            with open(clixo_file, 'r') as f_saved:
                df = pd.read_csv(f_saved, sep='\t', engine='python', header=None, comment='#')
                print(df.columns)
                ont1 = Ontology.from_table(df, clixo_format=True, parent=0, child=1)

            ont_url, G = ont1.to_ndex(name='MODY',
                                      ndex_server='http://test.ndexbio.org',
                                      ndex_pass='******',
                                      ndex_user='******',
                                      layout='bubble-collect',
                                      visibility='PUBLIC')

            if ont_url is not None and len(ont_url) > 0 and 'http' in ont_url:
                uuid = ont_url.split('/')[-1]
                return 'File has been processed.  UUID:: %s \n' % uuid
            else:
                return 'File has been processed.  UUID: %s \n' % ont_url


            print('File has been processed: %s' % ont_url)

        except OverflowError as ofe:
            print('Error with running clixo')

    else:
        raise HTTPError(422, '**** FILE IS MISSING ****')

    return "Unable to complete process.  See stack message above."
Пример #10
0
def analyze_gene_enrichment(ont_fn, disease_gene_fn):

    ## We read in our ontology
    #Generate custom ontology from Chromatin branch from human GO
    #ontology_file=Generate_Ontology_File('GO:0000785')
    ont = Ontology.from_table(ont_fn)
    translated = Find_GO_Focus_GeneDict(ont)

    #Test genes: autism
    text_file = open(disease_gene_fn, "r")
    test_gene_list = text_file.read().splitlines()
    text_file.close()

    #print("Number of autism genes in our ontology:" ,  len(set(ont.genes).intersection(set(test_gene_list))))

    num_ont_disease_genes = len(
        set(ont.genes).intersection(set(test_gene_list)))

    #Find number of test genes in enriched modules:
    num_enriched_disease_genes = Find_num_genes_in_enriched(
        ont, translated, test_gene_list)

    return (num_ont_disease_genes, num_enriched_disease_genes)
Пример #11
0
def metric_1(ont_file, test_gene_list):
    ont1 = Ontology.from_table(ont_file)
    ont1_genes = ont1.genes
    test_recovery = jaccard(ont1_genes, test_gene_list)
    print('recovery of test genes:', test_recovery)
    return test_recovery
def load_pheno_hpo():
	hpo=Ontology.from_table('../other_resources/HPO_parent_child.txt')
	#print (hpo)
	hpo=hpo.propagate(direction='forward', gene_term=True, term_term=False)
	hpo=hpo.focus(branches=['Phenotypic abnormality'])
	return hpo
Пример #13
0
    
	true_terms=Find_Enrichment(ont, chr_ont, test_gene_list)
	genes_in_true_terms=[]
	for item in true_terms:
		term=item[0]
		genes=chr_ont[term]
		genes_in_true_terms.append(genes)
	print ('genes in true terms:', genes_in_true_terms)
	overlap=list(set(genes_in_true_terms[0])&set(test_gene_list))
	overlap_num=len(overlap)
	print (overlap_num)
	return overlap_num


#Test genes: a list of some genes involved in transcriptionally active chromatin

test_gene_list=['AFF4', 'PSIP1', 'H2AFB1', 'H2AFB2', 'H2AFB3', 'TTC37', 'WDR61', 'KMT2E', 'BCAS3', 'HIST1H1C', 'ZC3H8', 'CTR9', 'PADI2', 'PAF1', 'SUPT6H', 'EXOSC4', 'ELL', 'PCID2', 'EXOSC5', 'PELP1', 'ESR1', 'EXOSC10', 'EXOSC3', 'ICE1', 'ICE2']

test_gene_list = 'AAK1 ABCC8 ABHD17A ABHD17B ABHD17C ABHD6 ABI1 ABI2 ABL1'.split()

#Generate custom ontology from Chromatin branch from human GO
#ontology_file=Generate_Ontology_File('GO:0000785')
ont=Ontology.from_table('./ont2.txt')

#Make dictionary of terms and genes within custom ontology
chr_ont=Find_GO_Focus_GeneDict(ont)

#Find number of test genes in enriched modules:
Find_num_genes_in_enriched(ont, chr_ont, test_gene_list)

Пример #14
0
        if len(test_gene_list) != 0:
            enriched_terms = Find_Enrichment(ont1, chr_ont, test_gene_list)
            enriched_modules.append(enriched_terms)
        else:
            continue
    enriched_modules = [x for x in enriched_modules if x != []]
    enriched_modules = [
        item for sublist in enriched_modules for item in sublist
    ]
    enriched_term_names = []
    for item in enriched_modules:
        enriched_term_name = item[0]
        enriched_term_names.append(enriched_term_name)
    unique_enriched_term_names = set(enriched_term_names)
    #print (unique_enriched_term_names)
    print('Num of Enriched Modules', len(unique_enriched_term_names))
    return


#Generate custom ontology 1 from Chromatin branch from human GO
ontology_file = Generate_Ontology_File('GO:0000785', 'ont1.txt')
ont1 = Ontology.from_table('ont1.txt')
#print (ont1)

#Generate custom ontology 2 from Chromosome branch from human GO
ont2_file = Generate_Ontology_File('GO:0005694', 'ont2.txt')
ont2 = Ontology.from_table('ont2.txt')
#print (ont2)

Num_Enriched_Modules(ont1, ont2)
Пример #15
0
# Download gene-term annotations for human
r = requests.get('http://geneontology.org/gene-associations/goa_human.gaf.gz')
with open(path + 'goa_human.gaf.gz', 'wb') as f:
    f.write(r.content)

hierarchy = pd.read_table('go.tab',
                          sep='\t',
                          header=None,
                          names=['Parent', 'Child', 'Relation', 'Namespace'])
with gzip.open(path + 'goa_human.gaf.gz', 'rb') as f:
    mapping = ddot.parse_gaf(f)

ontGO = Ontology.from_table(table=hierarchy,
                            parent='Parent',
                            child='Child',
                            mapping=mapping,
                            mapping_child='DB Object ID',
                            mapping_parent='GO ID',
                            add_root_name='GO:00SUPER',
                            ignore_orphan_terms=True)
ontGO.clear_node_attr()
ontGO.clear_edge_attr()

go_descriptions = pd.read_table('goID_2_name.tab',
                                header=None,
                                names=['Term', 'Term_Description'],
                                index_col=0)
ontGO.update_node_attr(go_descriptions)

ontGO = ontGO.collapse_ontology(method='mhkramer')

if 'GO:00SUPER' not in ontGO.terms: ontGO.add_root('GO:00SUPER', inplace=True)
Пример #16
0
    genes_in_true_terms = []
    for item in true_terms:
        term = item[0]
        genes = chr_ont[term]
        genes_in_true_terms.append(genes)
    print('genes in true terms:', genes_in_true_terms)
    overlap = list(set(genes_in_true_terms[0]) & set(test_gene_list))
    overlap_num = len(overlap)
    print(overlap_num)
    return overlap_num


#Test genes: a list of some genes involved in transcriptionally active chromatin

test_gene_list = [
    'AFF4', 'PSIP1', 'H2AFB1', 'H2AFB2', 'H2AFB3', 'TTC37', 'WDR61', 'KMT2E',
    'BCAS3', 'HIST1H1C', 'ZC3H8', 'CTR9', 'PADI2', 'PAF1', 'SUPT6H', 'EXOSC4',
    'ELL', 'PCID2', 'EXOSC5', 'PELP1', 'ESR1', 'EXOSC10', 'EXOSC3', 'ICE1',
    'ICE2'
]

#Generate custom ontology from Chromatin branch from human GO
ontology_file = Generate_Ontology_File('GO:0000785')
ont = Ontology.from_table('custom_ontology.txt')

#Make dictionary of terms and genes within custom ontology
chr_ont = Find_GO_Focus_GeneDict(ont)

#Find number of test genes in enriched modules:
Find_num_genes_in_enriched(ont, chr_ont, test_gene_list)
Пример #17
0
    uniq_parents = sorted(clixo_ont['Parent'].unique())
    for parent in uniq_parents:
        fw.write('{}\t{}\n'.format(parent, parent))

#
#	for line in f:
#		if line.startswith('#'):
#			continue
#
#	header = line.split()[0:3]
#	parents = set()
#	for line in f:
#		line = line.strip().split('\t')
#		parents.add(line[0])
#
#	for parent in sorted(parents):
#		fw.write('{}\t{}'.format(parent, parent))

with open(genes_fn) as f:
    test_gene_list = [x.strip() for x in f.readlines()]

ont = Ontology.from_table(mod_ont_fn)

# Make dictionary of terms and genes within custom ontology
chr_ont = Find_GO_Focus_GeneDict(ont)

#print(chr_ont)

# Find number of test genes in enriched modules:
Find_num_genes_in_enriched(ont, chr_ont, test_gene_list)