def test_consecutive_callback(): callback = ConsecutiveStopping(generations=3) assert check_callback(callback) == [callback] logbook = Logbook() logbook.record(fitness=0.9) logbook.record(fitness=0.8) logbook.record(fitness=0.83) # Not enough records to decide assert not callback(logbook=logbook) logbook.record(fitness=0.85) logbook.record(fitness=0.81) # Current record is better that at least of of the previous 3 records assert not callback(logbook=logbook) logbook.record(fitness=0.8) # Current record is worst that the 3 previous ones assert callback(logbook=logbook) assert callback(logbook=logbook, record={"fitness": 0.8}) with pytest.raises(Exception) as excinfo: callback() assert str(excinfo.value) == "logbook parameter must be provided"
def _search(self): """Apply the search algorithm. :return: The best individuals found :rtype: :py:class:`~deap.tools.HallOfFame` of individuals :return: A logbook with the statistics of the evolution :rtype: :py:class:`~deap.tools.Logbook` :return: The runtime of the algorithm :rtype: :py:class:`float` """ # The population will be a list of individuals self._toolbox.register("population", initRepeat, list, self._toolbox.individual) # Try to load the state of the last checkpoint try: pop, start_gen, logbook, runtime = self.__load_checkpoint() # If a checkpoint can't be loaded, start a new execution except Exception: # Create the initial population pop = self._toolbox.population(n=self.pop_size) # First generation start_gen = 0 # Computing runtime runtime = 0 # Create the logbook logbook = Logbook() logbook.header = list(self.stats_names) + \ (self._stats.fields if self._stats else []) # Evaluate the individuals with an invalid fitness num_evals = self._eval(pop) # Compile statistics about the population self._do_stats(pop, start_gen, num_evals, logbook) # Run all the generations for gen in range(start_gen + 1, self.n_gens + 1): start_time = time.perf_counter() self._do_generation(pop, gen, logbook) end_time = time.perf_counter() runtime += end_time - start_time # Save the wrapper state at each checkpoint if gen % self.checkpoint_freq == 0: self.__save_checkpoint(pop, gen, logbook, runtime) # Save the last state self.__save_checkpoint(pop, self.n_gens, logbook, runtime) return self._select_best(pop), logbook, runtime
def test_delta_callback(): callback = DeltaThreshold(0.001) assert check_callback(callback) == [callback] logbook = Logbook() logbook.record(fitness=0.9) # Not enough records to decide assert not callback(logbook=logbook) logbook.record(fitness=0.923) logbook.record(fitness=0.914) # Abs difference is not bigger than the threshold assert not callback(logbook=logbook) logbook.record(fitness=0.9141) # Abs difference is bigger than the threshold assert callback(logbook=logbook) assert callback(logbook=logbook, record={"fitness": 0.9141}) with pytest.raises(Exception) as excinfo: callback() assert str(excinfo.value) == "logbook parameter must be provided"
def plotStats(logbook: tools.Logbook): # plot statistics: minFitnessValues, meanFitnessValues = logbook.select("min", "avg") plt.figure(1) sns.set_style("whitegrid") plt.plot(minFitnessValues, color='red') plt.plot(meanFitnessValues, color='green') plt.xlabel('Generation') plt.ylabel('Min / Average Fitness') plt.title('Min and Average fitness over Generations')
def eaNigel(population, toolbox, ngen, goal=0, stats=None, halloffame=None, history=None, verbose=__debug__): """This algorithm is a simple evolutionary algorithm. :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param ngen: The number of generation. :param goal: Stop looking if the best score in the halloffame is less than this value :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population :returns: A class:`~deap.tools.Logbook` with the statistics of the evolution """ logbook = Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit if halloffame is not None: halloffame.update(population) if history is not None: history.update(population) record = stats.compile(population) if stats else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) # Begin the generational process gen = 0 while halloffame[0].fitness.values[0] > goal and gen < ngen: # Select the next generation individuals offspring = toolbox.procreate(population) # Replace the current population by the offspring population[:] = offspring # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(population) # population[-1] = halloffame[0] # always include the best ever in the offspring if history is not None: history.update(population) # Append the current generation statistics to the logbook record = stats.compile(population) if stats else {} gen += 1 logbook.record(gen=gen, nevals=len(invalid_ind), **record) print(logbook.stream) return population, logbook
def test_threshold_callback(): callback = ThresholdStopping(threshold=0.8) assert check_callback(callback) == [callback] assert not callback(record={"fitness": 0.5}) assert callback(record={"fitness": 0.9}) # test callback using LogBook instead of a record logbook = Logbook() logbook.record(fitness=0.93) logbook.record(fitness=0.4) assert not callback(logbook=logbook) logbook.record(fitness=0.95) assert callback(logbook=logbook) with pytest.raises(Exception) as excinfo: callback() assert (str(excinfo.value) == "At least one of record or logbook parameters must be provided")
def __init__(self, bset): self.bset = bset pop = [Population.INDIVIDUAL_CLASS(self.bset) for _ in range(self.POPULATION_SIZE)] super(Population, self).__init__(pop) self.stats = Statistics(lambda ind: ind.fitness.values) self.stats.register("avg", np.mean) self.stats.register("std", np.std) self.stats.register("min", np.min) self.stats.register("max", np.max) self.logbook = Logbook() self.logbook.header = ['gen'] + self.stats.fields self.hof = HallOfFame(1) self.generation = 0 # do an initial evaluation for ind in self: ind.fitness.values = ind.evaluate()
def plot_evolution(evolution: Logbook): args = ['gen', 'max', 'mean', 'surface', 'count'] ev_it, ev_max, ev_mean, ev_surface, ev_count = evolution.select(*args) ev_online = np.array(ev_mean).cumsum() / np.arange(1, len(ev_mean) + 1) ev_offline = np.array(ev_max).cumsum() / np.arange(1, len(ev_max) + 1) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharex='all', figsize=(12, 4)) # zbieznosc ax1.plot(ev_it, ev_max, label='max') ax1.plot(ev_it, ev_mean, label='mean') ax1.plot(ev_it, ev_offline, label='offline') ax1.plot(ev_it, ev_online, label='online') ax1.set_title('Zbieżność algorytmu') ax1.set_xlabel('Iteracja') ax1.set_ylabel('Przystosowanie') ax1.grid() ax1.legend() # surface ax2.plot(ev_it, np.array(ev_surface)) ax2.set_title('Suma powierchni najlepszego osobnika') ax2.set_xlabel('Iteracja') ax2.set_ylabel('Powierzchnia') ax2.grid() # count ax3.plot(ev_it, ev_count) ax3.set_title('Liczba skrzyń najlepszego osobnika') ax3.set_xlabel('Iteracja') ax3.set_ylabel('Liczba skrzyń') ax3.grid() plt.tight_layout() return fig
toolbox = Toolbox() # toolbox.register("generate", generate, _wf, rm, estimator) toolbox.register("generate", heft_gen) toolbox.register("fitness", fitness, _wf, rm, estimator) toolbox.register("estimate_force", compound_force) toolbox.register("update", compound_update, W, C) toolbox.register("G", G) toolbox.register("kbest", Kbest) stats = Statistics() stats.register("min", lambda pop: numpy.min([p.fitness.mofit for p in pop])) stats.register("avr", lambda pop: numpy.average([p.fitness.mofit for p in pop])) stats.register("max", lambda pop: numpy.max([p.fitness.mofit for p in pop])) stats.register("std", lambda pop: numpy.std([p.fitness.mofit for p in pop])) logbook = Logbook() logbook.header = ["gen", "G", "kbest"] + stats.fields def do_exp(): pop, _logbook, best = run_gsa(toolbox, stats, logbook, pop_size, 0, iter_number, None, kbest, ginit, **{"w":W, "c":C}) schedule = build_schedule(_wf, rm, estimator, best) Utility.validate_static_schedule(_wf, schedule) makespan = Utility.makespan(schedule) print("Final makespan: {0}".format(makespan)) print("Heft makespan: {0}".format(Utility.makespan(heft_schedule))) return makespan
toolbox = Toolbox() # toolbox.register("generate", generate, _wf, rm, estimator) toolbox.register("generate", heft_gen) toolbox.register("fitness", fitness, _wf, rm, estimator, sorted_tasks) toolbox.register("force_vector_matrix", force_vector_matrix) toolbox.register("velocity_and_position", velocity_and_position, beta=0.0) toolbox.register("G", G) toolbox.register("kbest", Kbest) stats = Statistics() stats.register("min", lambda pop: numpy.min([p.fitness.mofit for p in pop])) stats.register("avr", lambda pop: numpy.average([p.fitness.mofit for p in pop])) stats.register("max", lambda pop: numpy.max([p.fitness.mofit for p in pop])) stats.register("std", lambda pop: numpy.std([p.fitness.mofit for p in pop])) logbook = Logbook() logbook.header = ("gen", "G", "kbest", "min", "avr", "max", "std") pop_size = 40 iter_number = 200 kbest = pop_size ginit = 2 def do_exp(): pop, _logbook, best = run_gsa(toolbox, stats, logbook, pop_size, iter_number, kbest, ginit) solution = {MAPPING_SPECIE: list(best.entity.items()), ORDERING_SPECIE: sorted_tasks} schedule = build_schedule(_wf, estimator, rm, solution) Utility.validate_static_schedule(_wf, schedule) makespan = Utility.makespan(schedule)
def eaSimple(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__, pset=None, store=True): """ Parameters ---------- population toolbox cxpb mutpb ngen stats halloffame verbose pset store Returns ------- """ len_pop = len(population) logbook = Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) random_seed = random.randint(1, 1000) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) # fitnesses = parallelize(n_jobs=4, func=toolbox.evaluate, iterable=invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit[0], ind.expr = fit[1] if halloffame is not None: halloffame.update(population) random.seed(random_seed) record = stats.compile_(population) if stats else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) data_all = {} # Begin the generational process for gen in range(1, ngen + 1): if store: if pset: subp = partial(sub, subed=pset.rep_name_list, subs=pset.name_list) data = [{"score": i.fitness.values[0], "expr": subp(i.expr)} for i in halloffame.items[-5:]] else: data = [{"score": i.fitness.values[0], "expr": i.expr} for i in halloffame.items[-5:]] data_all['gen%s' % gen] = data # select_gs the next generation individuals offspring = toolbox.select_gs(population, len_pop) # Vary the pool of individuals offspring = varAnd(offspring, toolbox, cxpb, mutpb) if halloffame is not None: offspring.extend(halloffame) random_seed = random.randint(1, 1000) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) # fitnesses = parallelize(n_jobs=4, func=toolbox.evaluate, iterable=invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit[0], ind.expr = fit[1] # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) if halloffame.items[-1].fitness.values[0] >= 0.95: print(halloffame.items[-1]) print(halloffame.items[-1].fitness.values[0]) break random.seed(random_seed) # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile_(population) if stats else {} logbook.record(gen=gen, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) store = Store() store.to_txt(data_all) return population, logbook
class Population(list): """ A collection of individuals """ INDIVIDUAL_CLASS = Individual POPULATION_SIZE = 100 CLONE_BEST = 5 MAX_MATE_ATTEMPTS = 10 MATE_MUTATE_CLONE = (80, 18, 2) def __init__(self, bset): self.bset = bset pop = [Population.INDIVIDUAL_CLASS(self.bset) for _ in range(self.POPULATION_SIZE)] super(Population, self).__init__(pop) self.stats = Statistics(lambda ind: ind.fitness.values) self.stats.register("avg", np.mean) self.stats.register("std", np.std) self.stats.register("min", np.min) self.stats.register("max", np.max) self.logbook = Logbook() self.logbook.header = ['gen'] + self.stats.fields self.hof = HallOfFame(1) self.generation = 0 # do an initial evaluation for ind in self: ind.fitness.values = ind.evaluate() def select(self, k): """Probablistic select *k* individuals among the input *individuals*. The list returned contains references to the input *individuals*. :param k: The number of individuals to select. :returns: A list containing k individuals. The individuals returned are randomly selected from individuals according to their fitness such that the more fit the individual the more likely that individual will be chosen. Less fit individuals are less likely, but still possibly, selected. """ # adjusted pop is a list of tuples (adjusted fitness, individual) adjusted_pop = [(1.0 / (1.0 + i.fitness.values[0]), i) for i in self] # normalised_pop is a list of tuples (float, individual) where the float indicates # a 'share' of 1.0 that the individual deserves based on it's fitness relative to # the other individuals. It is sorted so the best chances are at the front of the list. denom = sum([fit for fit, ind in adjusted_pop]) normalised_pop = [(fit / denom, ind) for fit, ind in adjusted_pop] normalised_pop = sorted(normalised_pop, key=lambda i: i[0], reverse=True) # randomly select with a fitness bias # FIXME: surely this can be optimized? selected = [] for x in range(k): rand = random.random() accumulator = 0.0 for share, ind in normalised_pop: accumulator += share if rand <= accumulator: selected.append(ind) break if len(selected) == 1: return selected[0] else: return selected def evolve(self): """ Evolve this population by one generation """ self.logbook.record(gen=self.generation, **self.stats.compile(self)) self.hof.update(self) print(self.logbook.stream) # the best x of the population are cloned directly into the next generation offspring = self[:self.CLONE_BEST] # rest of the population clone, mate, or mutate at random for idx in range(len(self) - self.CLONE_BEST): # decide how to alter this individual rand = random.randint(0,100) for _ in range(0, self.MAX_MATE_ATTEMPTS): try: if rand < self.MATE_MUTATE_CLONE[0]: # MATE/CROSSOVER receiver, contributor = self.select(2) child = receiver.clone() child.mate(contributor) break elif rand < (self.MATE_MUTATE_CLONE[0] + self.MATE_MUTATE_CLONE[1]): # MUTATE ind = self.select(1) child = ind.clone() child.mutate() break else: child = self.select(1).clone() break except BirthError: continue # generate new blood when reproduction fails so badly else: child = Population.INDIVIDUAL_CLASS(self.bset) offspring.append(child) self[:] = offspring self.generation += 1 # evaluate every individual and sort for ind in self: if not len(ind.fitness.values): ind.fitness.values = ind.evaluate() self.sort(key=lambda i: i.fitness.values[0])
def eaSimple(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__, pset=None, store=True): """ Parameters ---------- population toolbox cxpb mutpb ngen stats halloffame verbose pset store Returns ------- """ rst = random.getstate() len_pop = len(population) logbook = Logbook() logbook.header = [] + (stats.fields if stats else []) data_all = {} random.setstate(rst) for gen in range(1, ngen + 1): "评价" rst = random.getstate() """score""" invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.parallel(iterable=population) for ind, fit, in zip(invalid_ind, fitnesses): ind.fitness.values = fit[0], ind.expr = fit[1] ind.dim = fit[2] ind.withdim = fit[3] random.setstate(rst) rst = random.getstate() """elite""" add_ind = [] add_ind1 = toolbox.select_kbest_target_dim(population, K_best=0.01 * len_pop) add_ind2 = toolbox.select_kbest_dimless(population, K_best=0.01 * len_pop) add_ind3 = toolbox.select_kbest(population, K_best=5) add_ind += add_ind1 add_ind += add_ind2 add_ind += add_ind3 elite_size = len(add_ind) random.setstate(rst) rst = random.getstate() """score""" if store: subp = functools.partial(sub, subed=pset.rep_name_list, subs=pset.real_name_list) data = { "gen{}_pop{}".format(gen, n): { "gen": gen, "pop": n, "score": i.fitness.values[0], "expr": str(subp(i.expr)), } for n, i in enumerate(population) if i is not None } data_all.update(data) random.setstate(rst) rst = random.getstate() """record""" if halloffame is not None: halloffame.update(add_ind3) if len(halloffame.items ) > 0 and halloffame.items[-1].fitness.values[0] >= 0.95: print(halloffame.items[-1]) print(halloffame.items[-1].fitness.values[0]) break random.setstate(rst) rst = random.getstate() """Dynamic output""" record = stats.compile(population) if stats else {} logbook.record(gen=gen, pop=len(population), **record) if verbose: print(logbook.stream) random.setstate(rst) """crossover, mutate""" offspring = toolbox.select_gs(population, len_pop - elite_size) # Vary the pool of individuals offspring = varAnd(offspring, toolbox, cxpb, mutpb) rst = random.getstate() """re-run""" offspring.extend(add_ind) population[:] = offspring random.setstate(rst) store = Store() store.to_csv(data_all) return population, logbook
def do_inherited_pop_exp(saver, alg_builder, chromosome_cleaner_builder, wf_name, **params): _wf = wf(wf_name) rm = ExperimentResourceManager(rg.r(params["resource_set"]["nodes_conf"])) estimator = SimpleTimeCostEstimator(**params["estimator_settings"]) chromosome_cleaner = chromosome_cleaner_builder(_wf, rm, estimator) dynamic_heft = DynamicHeft(_wf, rm, estimator) logbook = Logbook() stats = tools.Statistics(lambda ind: ind.fitness.values[0]) stats.register("avg", numpy.mean) stats.register("std", numpy.std) stats.register("min", numpy.min) stats.register("max", numpy.max) ga = alg_builder(_wf, rm, estimator, params["init_sched_percent"], log_book=logbook, stats=stats, alg_params=params["alg_params"]) machine = GaHeftOldPopExecutor(heft_planner=dynamic_heft, wf=_wf, resource_manager=rm, estimator=estimator, stat_saver=None, ga_builder=lambda: ga, chromosome_cleaner=chromosome_cleaner, **params["executor_params"]) machine.init() print("Executor start") machine.run() print("Executor stop") resulted_schedule = machine.current_schedule stat_data = machine.executor_stat_data Utility.validate_dynamic_schedule(_wf, resulted_schedule) data = { "wf_name": wf_name, "params": params, "result": { "random_init_logbook": stat_data["random_init_logbook"], "inherited_init_logbook": stat_data["inherited_init_logbook"], "makespan": Utility.makespan(resulted_schedule), ## TODO: this function should be remade to adapt under conditions of dynamic env #"overall_transfer_time": Utility.overall_transfer_time(resulted_schedule, _wf, estimator), "overall_execution_time": Utility.overall_execution_time(resulted_schedule), "overall_failed_tasks_count": Utility.overall_failed_tasks_count(resulted_schedule) } } if saver is not None: saver(data) return data
def __init__(self, pset, pop=500, gen=20, mutate_prob=0.5, mate_prob=0.8, hall=1, re_hall=1, re_Tree=None, initial_min=None, initial_max=3, max_value=5, scoring=(r2_score,), score_pen=(1,), filter_warning=True, cv=1, add_coef=True, inter_add=True, inner_add=False, vector_add=False, out_add=False, flat_add=False, cal_dim=False, dim_type=None, fuzzy=False, n_jobs=1, batch_size=40, random_state=None, stats=None, verbose=True, migrate_prob=0, tq=True, store=False, personal_map=False, stop_condition=None, details=False, classification=False, score_object="y", sub_mu_max=1, limit_type="h_bgp", batch_para=False): """ Parameters ---------- pset:SymbolSet the feature x and target y and others should have been added. pop: int number of population. gen: int number of generation. mutate_prob:float probability of mutate. mate_prob:float probability of mate(crossover). initial_max:int max initial size of expression when first producing. initial_min : None,int min initial size of expression when first producing. max_value:int max size of expression. limit_type: "height" or "length",","h_bgp" limitation type for max_value, but don't affect initial_max, initial_min. hall:int,>=1 number of HallOfFame (elite) to maintain. re_hall:None or int>=2 Notes: only valid when hall number of HallOfFame to add to next generation. re_Tree: int number of new features to add to next generation. 0 is false to add. personal_map:bool or "auto" "auto" is using 'premap' and with auto refresh the 'premap' with individual.\n True is just using constant 'premap'.\n False is just use the prob of terminals. scoring: list of Callable, default is [sklearn.metrics.r2_score,] See Also ``sklearn.metrics`` score_pen: tuple of 1, -1 or float but 0. >0 : max problem, best is positive, worse -np.inf. <0 : min problem, best is negative, worse np.inf. Notes: if multiply score method, the scores must be turn to same dimension in prepossessing or weight by score_pen. Because the all the selection are stand on the mean(w_i*score_i) Examples:: scoring = [r2_score,] score_pen= [1,] cv:sklearn.model_selection._split._BaseKFold,int the shuffler must be False, default=1 means no cv. filter_warning:bool filter warning or not. add_coef:bool add coef in expression or not. inter_add:bool add intercept constant or not. inner_add:bool add inner coefficients or not. out_add:bool add out coefficients or not. flat_add:bool add flat coefficients or not. n_jobs:int default 1, advise 6. batch_size:int default 40, depend of machine. random_state:int None,int. cal_dim:bool escape the dim calculation. dim_type:Dim or None or list of Dim "coef": af(x)+b. a,b have dimension,f(x)'s dimension is not dnan. \n "integer": af(x)+b. f(x) is with integer dimension. \n [Dim1,Dim2]: f(x)'s dimension in list. \n Dim: f(x) ~= Dim. (see fuzzy) \n Dim: f(x) == Dim. \n None: f(x) == pset.y_dim fuzzy:bool choose the dim with same base with dim_type, such as m,m^2,m^3. stats:dict details of logbook to show. \n Map:\n values = {"max": np.max, "mean": np.mean, "min": np.mean, "std": np.std, "sum": np.sum} keys = {\n "fitness": just see fitness[0], \n "fitness_dim_max": max problem, see fitness with demand dim,\n "fitness_dim_min": min problem, see fitness with demand dim,\n "dim_is_target": demand dim,\n "coef": dim is True, coef have dim, \n "integer": dim is integer, \n ... } if stats is None, default is: for cal_dim=True: stats = {"fitness_dim_max": ("max",), "dim_is_target": ("sum",)} for cal_dim=False stats = {"fitness": ("max",)} if self-definition, the key is func to get attribute of each ind. Examples:: def func(ind): return ind.fitness[0] stats = {func: ("mean",), "dim_is_target": ("sum",)} verbose:bool print verbose logbook or not. tq:bool print progress bar or not. store:bool or path bool or path. stop_condition:callable stop condition on the best ind of hall, which return bool,the true means stop loop. Examples:: def func(ind): c = ind.fitness.values[0]>=0.90 return c details:bool return expr and predict_y or not. classification: bool classification or not. score_object: score by y or delta y (for implicit function). """ super(BaseLoop, self).__init__() assert initial_max <= max_value, "the initial size of expression should less than max_value limitation" if cal_dim: assert all( [isinstance(i, Dim) for i in pset.dim_ter_con.values()]), \ "all import dim of pset should be Dim object." self.details = details self.max_value = max_value self.pop = pop self.gen = gen self.mutate_prob = mutate_prob self.mate_prob = mate_prob self.migrate_prob = migrate_prob self.verbose = verbose self.cal_dim = cal_dim self.re_hall = re_hall self.re_Tree = re_Tree self.store = store self.limit_type = limit_type self.data_all = [] self.personal_map = personal_map self.stop_condition = stop_condition self.population = [] self.rand_state = None self.random_state = random_state self.sub_mu_max = sub_mu_max self.population_next = [] self.cpset = CalculatePrecisionSet(pset, scoring=scoring, score_pen=score_pen, filter_warning=filter_warning, cal_dim=cal_dim, add_coef=add_coef, inter_add=inter_add, inner_add=inner_add, vector_add=vector_add, out_add=out_add, flat_add=flat_add, cv=cv, n_jobs=n_jobs, batch_size=batch_size, tq=tq, fuzzy=fuzzy, dim_type=dim_type, details=details, classification=classification, score_object=score_object, batch_para=batch_para ) Fitness_ = newclass.create("Fitness_", Fitness, weights=score_pen) self.PTree = newclass.create("PTrees", SymbolTree, fitness=Fitness_) # def produce if initial_min is None: initial_min = 2 self.register("genGrow", genGrow, pset=self.cpset, min_=initial_min, max_=initial_max + 1, personal_map=self.personal_map) self.register("genFull", genFull, pset=self.cpset, min_=initial_min, max_=initial_max + 1, personal_map=self.personal_map) self.register("genHalf", genGrow, pset=self.cpset, min_=initial_min, max_=initial_max + 1, personal_map=self.personal_map) self.register("gen_mu", genGrow, min_=1, max_=self.sub_mu_max + 1, personal_map=self.personal_map) # def selection self.register("select", selTournament, tournsize=2) self.register("selKbestDim", selKbestDim, dim_type=self.cpset.dim_type, fuzzy=self.cpset.fuzzy) self.register("selBest", selBest) self.register("mate", cxOnePoint) # def mutate self.register("mutate", mutUniform, expr=self.gen_mu, pset=self.cpset) self.decorate("mate", staticLimit(key=operator.attrgetter(limit_type), max_value=self.max_value)) self.decorate("mutate", staticLimit(key=operator.attrgetter(limit_type), max_value=self.max_value)) if stats is None: if cal_dim: if score_pen[0] > 0: stats = {"fitness_dim_max": ("max",), "dim_is_target": ("sum",)} else: stats = {"fitness_dim_min": ("min",), "dim_is_target": ("sum",)} else: if score_pen[0] > 0: stats = {"fitness": ("max",)} else: stats = {"fitness": ("min",)} self.stats = Statis_func(stats=stats) logbook = Logbook() logbook.header = ['gen'] + (self.stats.fields if self.stats else []) self.logbook = logbook if hall is None: hall = 1 self.hall = HallOfFame(hall) if re_hall is None: self.re_hall = None else: if re_hall == 1 or re_hall == 0: print("re_hall should more than 1") re_hall = 2 assert re_hall >= hall, "re_hall should more than hall" self.re_hall = HallOfFame(re_hall)
def eaSimple(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__, pset=None, store=True): """ Parameters ---------- population toolbox cxpb mutpb ngen stats halloffame verbose pset store Returns ------- """ rst = random.getstate() len_pop = len(population) logbook = Logbook() logbook.header = [] + (stats.fields if stats else []) data_all = {} random.setstate(rst) for gen in range(1, ngen + 1): "评价" rst = random.getstate() """score""" invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.parallel(iterable=population) for ind, fit, in zip(invalid_ind, fitnesses): ind.fitness.values = fit[0], ind.expr = fit[1] ind.y_dim = fit[2] ind.withdim = fit[3] random.setstate(rst) rst = random.getstate() """elite""" add_ind = [] add_ind1 = toolbox.select_kbest_target_dim(population, K_best=0.05 * len_pop) add_ind += add_ind1 elite_size = len(add_ind) random.setstate(rst) rst = random.getstate() """score""" random.setstate(rst) rst = random.getstate() """record""" if halloffame is not None: halloffame.update(add_ind1) if len(halloffame.items ) > 0 and halloffame.items[-1].fitness.values[0] >= 0.9999: print(halloffame.items[-1]) print(halloffame.items[-1].fitness.values[0]) break random.setstate(rst) rst = random.getstate() """Dynamic output""" record = stats.compile_(population) if stats else {} logbook.record(gen=gen, pop=len(population), **record) if verbose: print(logbook.stream) random.setstate(rst) """crossover, mutate""" offspring = toolbox.select_gs(population, len_pop - elite_size) # Vary the pool of individuals offspring = varAnd(offspring, toolbox, cxpb, mutpb) rst = random.getstate() """re-run""" offspring.extend(add_ind) population[:] = offspring random.setstate(rst) store = Store() store.to_csv(data_all) return population, logbook
def eaMuPlusLambda_hack(population, toolbox, mu, lambda_, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__): """This is the :math:`(\mu + \lambda)` evolutionary algorithm. :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param mu: The number of individuals to select for the next generation. :param lambda\_: The number of children to produce at each generation. :param cxpb: The probability that an offspring is produced by crossover. :param mutpb: The probability that an offspring is produced by mutation. :param ngen: The number of generation. :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population :returns: A class:`~deap.tools.Logbook` with the statistics of the evolution. The algorithm takes in a population and evolves it in place using the :func:`varOr` function. It returns the optimized population and a :class:`~deap.tools.Logbook` with the statistics of the evolution. The logbook will contain the generation number, the number of evaluations for each generation and the statistics if a :class:`~deap.tools.Statistics` is given as argument. The *cxpb* and *mutpb* arguments are passed to the :func:`varOr` function. The pseudocode goes as follow :: evaluate(population) for g in range(ngen): offspring = varOr(population, toolbox, lambda_, cxpb, mutpb) evaluate(offspring) population = select(population + offspring, mu) First, the individuals having an invalid fitness are evaluated. Second, the evolutionary loop begins by producing *lambda_* offspring from the population, the offspring are generated by the :func:`varOr` function. The offspring are then evaluated and the next generation population is selected from both the offspring **and** the population. Finally, when *ngen* generations are done, the algorithm returns a tuple with the final population and a :class:`~deap.tools.Logbook` of the evolution. This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`, :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be registered in the toolbox. This algorithm uses the :func:`varOr` variation. """ logbook = Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit if halloffame is not None: halloffame.update(population) record = stats.compile(population) if stats is not None else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) # --- Hack --- all_generations = {} # ------------ # Begin the generational process for gen in range(1, ngen + 1): # Vary the population offspring = varOr(population, toolbox, lambda_, cxpb, mutpb) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) # --- Hack --- all_generations[gen] = population + offspring # ------------ # Select the next generation population population[:] = toolbox.select(population + offspring, mu) # Update the statistics with the new population record = stats.compile(population) if stats is not None else {} logbook.record(gen=gen, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) return population, logbook, all_generations
def eaSimple(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__, pset=None, store=True): """ Parameters ---------- population toolbox cxpb mutpb ngen stats halloffame verbose pset store Returns ------- """ rst = random.getstate() len_pop = len(population) logbook = Logbook() logbook.header = ['gen', 'pop'] + (stats.fields if stats else []) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] # fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) fitnesses = toolbox.parallel(iterable=population) for ind, fit, in zip(invalid_ind, fitnesses): ind.fitness.values = fit[0], ind.expr = fit[1] ind.dim = fit[2] ind.withdim = fit[3] add_ind = toolbox.select_kbest_target_dim(population, K_best=0.1 * len_pop) if halloffame is not None: halloffame.update(add_ind) record = stats.compile(population) if stats else {} logbook.record(gen=0, nevals=len(population), **record) if verbose: print(logbook.stream) data_all = {} # Begin the generational process random.setstate(rst) for gen in range(1, ngen + 1): rst = random.getstate() if store: rst = random.getstate() target_dim = toolbox.select_kbest_target_dim.keywords['dim_type'] subp = functools.partial(sub, subed=pset.rep_name_list, subs=pset.real_name_list) data = { "gen{}_pop{}".format(gen, n): { "gen": gen, "pop": n, "score": i.fitness.values[0], "expr": str(subp(i.expr)), "with_dim": 1 if i.withdim else 0, "dim_is_target_dim": 1 if i.dim in target_dim else 0, "gen_dim": "{}{}".format(gen, 1 if i.withdim else 0), "gen_target_dim": "{}{}".format(gen, 1 if i.dim in target_dim else 0), "socre_dim": i.fitness.values[0] if i.withdim else 0, "socre_target_dim": i.fitness.values[0] if i.dim in target_dim else 0, } for n, i in enumerate(population) if i is not None } data_all.update(data) random.setstate(rst) # select_gs the next generation individuals offspring = toolbox.select_gs(population, len_pop) # Vary the pool of individuals offspring = varAnd(offspring, toolbox, cxpb, mutpb) rst = random.getstate() # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] # fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) # fitnesses = parallelize(n_jobs=3, func=toolbox.evaluate, iterable=invalid_ind, respective=False) fitnesses = toolbox.parallel(iterable=invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit[0], ind.expr = fit[1] ind.dim = fit[2] ind.withdim = fit[3] add_ind = toolbox.select_kbest_target_dim(population, K_best=0.1 * len_pop) add_ind2 = toolbox.select_kbest_dimless(population, K_best=0.2 * len_pop) add_ind3 = toolbox.select_kbest(population, K_best=5) offspring += add_ind offspring += add_ind2 offspring += add_ind3 # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(add_ind) if len(halloffame.items ) > 0 and halloffame.items[-1].fitness.values[0] >= 0.95: print(halloffame.items[-1]) print(halloffame.items[-1].fitness.values[0]) break # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile(population) if stats else {} logbook.record(gen=gen, nevals=len(population), **record) if verbose: print(logbook.stream) random.setstate(rst) store = Store() store.to_csv(data_all) return population, logbook
def multiEaSimple(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__, pset=None, store=True, alpha=1): """ Parameters ---------- population toolbox cxpb mutpb ngen stats halloffame verbose pset store alpha Returns ------- """ logbook = Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] random_seed = random.randint(1, 1000) # fitnesses = list(toolbox.map(toolbox.evaluate, [str(_) for _ in invalid_ind])) # fitnesses2 = toolbox.map(toolbox.evaluate2, [str(_) for _ in invalid_ind]) fitnesses = parallelize(n_jobs=6, func=toolbox.evaluate, iterable=[str(_) for _ in invalid_ind]) fitnesses2 = parallelize(n_jobs=6, func=toolbox.evaluate2, iterable=[str(_) for _ in invalid_ind]) def funcc(a, b): """ Parameters ---------- a b Returns ------- """ return (alpha * a + b) / 2 for ind, fit, fit2 in zip(invalid_ind, fitnesses, fitnesses2): ind.fitness.values = funcc(fit[0], fit2[0]), ind.values = (fit[0], fit2[0]) ind.expr = (fit[1], fit2[1]) if halloffame is not None: halloffame.update(population) random.seed(random_seed) record = stats.compile_(population) if stats else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) data_all = {} # Begin the generational process for gen in range(1, ngen + 1): # select_gs the next generation individuals offspring = toolbox.select_gs(population, len(population)) # Vary the pool of individuals offspring = varAnd(offspring, toolbox, cxpb, mutpb) if halloffame is not None: offspring.extend(halloffame.items[-2:]) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] random_seed = random.randint(1, 1000) # fitnesses = toolbox.map(toolbox.evaluate, [str(_) for _ in invalid_ind]) # fitnesses2 = toolbox.map(toolbox.evaluate2, [str(_) for _ in invalid_ind]) fitnesses = parallelize(n_jobs=6, func=toolbox.evaluate, iterable=[str(_) for _ in invalid_ind]) fitnesses2 = parallelize(n_jobs=6, func=toolbox.evaluate2, iterable=[str(_) for _ in invalid_ind]) for ind, fit, fit2 in zip(invalid_ind, fitnesses, fitnesses2): ind.fitness.values = funcc(fit[0], fit2[0]), ind.values = (fit[0], fit2[0]) ind.expr = (fit[1], fit2[1]) # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) if halloffame.items[-1].fitness.values[0] >= 0.95: print(halloffame.items[-1]) print(halloffame.items[-1].fitness.values[0]) print(halloffame.items[-1].values[0]) print(halloffame.items[-1].values[1]) break if store: if pset: subp = partial(sub, subed=pset.rep_name_list, subs=pset.name_list) data = [{"score": i.values[0], "expr": subp(i.expr[0])} for i in halloffame.items[-2:]] data2 = [{"score": i.values[1], "expr": subp(i.expr[1])} for i in halloffame.items[-2:]] else: data = [{"score": i.values[0], "expr": i.expr} for i in halloffame.items[-2:]] data2 = [{"score": i.values[1], "expr": i.expr[2]} for i in halloffame.items[-2:]] data_all['gen%s' % gen] = list(zip(data, data2)) random.seed(random_seed) # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile_(population) if stats else {} logbook.record(gen=gen, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) if store: store1 = Store() store1.to_txt(data_all) return population, logbook